Different levels of Collagen XVIII expression have been associated with several pathological processes such as cancer, liver fibrosis, diabetic retinopathy and Alzheimer's disease. Understanding the transcriptional regulation of Collagen XVIII might elucidate some pathways related to the progression of these diseases. The promoter 2 of COL18A1 gene is poorly understood and is responsible for the transcription of this gene in several adult tissues such as liver, eyes and brain. This study focused upon characterization of cis-regulatory elements interacting with human COL18A1 promoter 2 and identification of SNPs in this region in different ethnic groups. Our results show that there are five conserved regions (I to V) between human and mouse promoter 2 and that the human COL18A1 core promoter is located between nucleotides -186 and -21. Sp1 and Sp3 bind to conserved regions I and V, while Sp3 and YY1 interact with region II. We have verified that the SNP at position -700 (T>G) is embedded in two common haplotypes, which have different frequencies between European and African descendents. The allele -700G increases transcription and binding for a still unknown transcription factor. SNP -700 affects Sp3 and YY1 interaction with this region, even though it is not part of these transcription factors' predicted binding sites. Therefore, our results show for the first time that Sp3 and YY1 interact with human COL18A1 promoter 2, and that nucleotide -700 is part of a binding motif for a still unknown TF that is involved in the expression of this gene in hepatocytes. In addition, we also confirm the involvement of Sp1 in the regulation of this gene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2005.08.003DOI Listing

Publication Analysis

Top Keywords

sp3 yy1
16
collagen xviii
12
human col18a1
12
sp1 sp3
8
increases transcription
8
col18a1 promoter
8
conserved regions
8
yy1 interact
8
promoter
6
sp3
5

Similar Publications

The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution.

View Article and Find Full Text PDF

Sentrin specific-protease 1 (SENP1) is a protein involved in deSUMOylation that is almost overexpressed in cancer. SENP1 has a determinative role in the activation of transcription programs in the innate immune responses and the development B of and C lymphocytes. We found, SENP1 possibly plays a critical role in immune infiltration and acts as an expression marker in PAAD, ESCA, and THYM.

View Article and Find Full Text PDF

The human chondromodulin-1 (Chm-1, Chm-I, CNMD, or Lect1) gene encodes a 334 amino acid type II transmembrane glycoprotein protein with characteristics of a furin cleavage site and a putative glycosylation site. Chm-1 is expressed most predominantly in healthy and developing avascular cartilage, and healthy cardiac valves. Chm-1 plays a vital role during endochondral ossification by the regulation of angiogenesis.

View Article and Find Full Text PDF

Adaptation of the FK506 binding protein 1B to hibernation in bats.

Cryobiology

August 2018

Laboratory of Molecular Biology and Evolution, School of Life Science, East China Normal University, Shanghai, China. Electronic address:

Hibernation is an adaptive strategy used by some animals to cope with cold and food shortage. The heart rate, overall energy need, body temperature, and many other physiological functions are greatly reduced during torpor but promptly return to normal levels upon arousal. The heartbeat of torpid bats can be hundreds fold lower than that of active bats, indicating that hibernating bats have a remarkable ability to control excitation-contraction coupling in cardiac muscle.

View Article and Find Full Text PDF

The polyaromatic hydrocarbon β-naphthoflavone alters binding of YY1, Sp1, and Sp3 transcription factors to the Dp71 promoter in hepatic cells.

Mol Med Rep

April 2018

Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León 64720, México.

The smallest product of the Duchenne muscular dystrophy gene, dystrophin (Dp)71, is ubiquitously expressed in nonmuscle tissues. We previously showed that Dp71 expression in hepatic cells is modulated in part by stimulating factor 1 (Sp1), stimulating protein 3 (Sp3), and yin yang 1 (YY1) transcription factors, and that the polyaromatic hydrocarbon, β-naphthoflavone (β‑NF), downregulates Dp71 expression. The aim of the present study was to determine whether β‑NF represses Dp71 expression by altering mRNA stability or its promoter activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!