Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanisms controlling fat depot-specific metabolism are poorly understood. During starvation of mice, downregulation of lipogenic genes, suppression of fatty acid synthesis, and increases in lipid oxidation were all more pronounced in epididymal than in subcutaneous fat. In epididymal fat, relatively strong upregulation of uncoupling protein 2 and phosphoenolpyruvate carboxykinase genes was found. In mice maintained both at 20 and 30 degrees C, AMP-activated protein kinase was activated in epididymal but did not change in subcutaneous fat. Our results suggest that AMPK may have a role in the different response of various fat depots to starvation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2005.09.078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!