This study aimed to determine whether high-dose antioxidant supplementation had an impact on the acute exercise effects related to erythrocyte membrane mechanics. Experimental animals (n=32) were divided into four groups as control, exercised, supplemented, and supplemented + exercise. Four-week antioxidant supplementation (vitamin C, vitamin E, and zinc) was applied to experimental animals. Following acute exercise on a motor-driven rodent treadmill, erythrocyte aggregation and deformability, erythrocyte adhesion to endothelial cells, superoxide dismutase (SOD), and glutathione peroxidase activities of the erythrocytes were analyzed. In both supplemented and non-supplemented exercised groups, there was a significant decrease in SOD activities and erythrocyte aggregation, and an increase in adhesion to endothelial cell although there was no change on erythrocyte deformability. There were no differences in the responses to the exercise of supplemented and nonsupplemented rats. The data suggested that high-dose antioxidant supplementation did not alter the effects of acute exercise on erythrocyte membrane mechanics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1024/0300-9831.75.4.243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!