Nitrate, a signal relieving seed dormancy in Arabidopsis.

Plant Cell Environ

Unité de Nutrition Azotée des Plantes, INRA centre de Versailles-Grignon, Versailles Cedex, France.

Published: April 2005

Nitrate is an important nitrogen source for plants, but also a signal molecule that controls various aspects of plant development. In the present study the role of nitrate on seed dormancy in Arabidopsis was investigated. The effects of either mutations affecting the Arabidopsis nitrate reductase genes or of different nitrate regimes of mother plants on the dormancy of the seeds produced were analysed. Altogether, data show that conditions favouring nitrate accumulation in mother plants and in seeds lead to a lower dormancy of seeds with little other morphological or biochemical differences. Analysis of germination during seed development indicated that nitrate does not prevent the onset of dormancy but rather its maintenance. The effect of an exogenous supply of nitrate on seed germination was tested: nitrate in contrast to glutamine or potassium chloride clearly stimulated the germination of dormant seeds. Data show, moreover, that the Arabidopsis dual affinity nitrate transporter NRT1.1 (CHL1) may be involved in conveying the nitrate signal into seeds. Thus, nitrate provided exogenously or by mother plants to the produced seeds, acts as a signal molecule favouring germination in Arabidopsis. This signalling may involve interaction with the abscisic acid or gibberellin pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2005.01292.xDOI Listing

Publication Analysis

Top Keywords

nitrate
12
mother plants
12
nitrate signal
8
seed dormancy
8
dormancy arabidopsis
8
arabidopsis nitrate
8
signal molecule
8
nitrate seed
8
dormancy seeds
8
seeds
6

Similar Publications

Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances.

Bioresour Technol

January 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:

Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined.

View Article and Find Full Text PDF

Chinese cabbage is an important vegetable in southern China. Excessive nitrogen fertilizer application can lead to the accumulation of nitrate in edible organs, which affects food value. Hence, the cultivation of varieties with high nitrogen utilization efficiency (NUE) and low nitrate accumulation is essential for molecular breeding.

View Article and Find Full Text PDF

Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.

View Article and Find Full Text PDF

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!