In reaction centers from Rhodobacter sphaeroides, subjected to continuous illumination in the presence of an inhibitor of the Q(A) to Q(B) electron transfer, the oxidation of P870 consisted of several kinetic phases with a fast initial reaction followed by very slow accumulation of P870(+) with a halftime of several minutes. When the light was turned off, a phase of fast charge recombination was followed by an equally slow reduction of P870(+). In reaction centers depleted of Q(B), where forward electron transfer from Q(A) is also prevented, the slow reactions were also observed but with different kinetic properties. The kinetic traces of accumulation and decay of P870(+) could be fitted to a simple three-state model where the initial, fast charge separation is followed by a slow reversible conversion to a long-lived, charge-stabilized state. Spectroscopic examination of the charge-separated, semi-stable state, using optical absorbance and EPR spectroscopy, suggests that the unpaired electron on the acceptor side is located in an environment significantly different from normal. The activation parameters and enthalpy and entropy changes, determined from the temperature dependence of the slow conversion reaction, suggest that this might be coupled to changes in the protein structure of the reaction centers, supporting the spectroscopic results. One model that is consistent with the present observations is that reaction centers, after the primary charge separation, undergo a slow, light-induced change in conformation affecting the acceptor side.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/A:1023944605460 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.
Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.
View Article and Find Full Text PDFAnat Sci Int
January 2025
Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.
View Article and Find Full Text PDFJ Patient Rep Outcomes
January 2025
Institute of Rheumatology, Belgrade, Serbia.
Objectives: To translate, cross-culturally adapt and validate the Serbian Ankylosing Spondylitis Quality of Life (ASQoL) questionnaire, e.g. according to the new nomenclature Radiographic-Axial Spondyloarthritis (r-axSpA), and to relate it to disease activity and functional status domains.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!