The effects of modulated ADP/ATP and NADPH/NADP(+) ratios, and of protein kinase inhibitors, on the in vitro reformation of phototransformable protochlorophyllide, i.e. the aggregated ternary complexes between NADPH, protochlorophyllide, and NADPH-protochlorophyllide oxidoreductase (POR, EC 1.3.1.33), in etioplast membranes isolated from dark-grown wheat (Triticum aestivum) were investigated. Low temperature fluorescence emission spectra (-196 degrees C) were used to determine the state of the pigments. The presence of spectral intermediates of protochlorophyllide and the reformation of phototransformable protochlorophyllide were reduced at high ATP, but favoured by high ADP. Increased ADP level partly prevented the chlorophyllide blue-shift. The protein kinase inhibitor K252a prevented reformation of phototransformable protochlorophyllide without showing any effect on the chlorophyllide blue-shift. Addition of NADPH did not overcome the inhibition. The results indicate that protein phosphorylation plays a role in the conversion of the non-phototransformable protochlorophyllide to POR-associated phototransformable protochlorophyllide. The possible presence of a plastid ADP-dependent kinase, the activity of which favours the formation of PLBs, is discussed. Reversible protein phosphorylation is suggested as a regulatory mechanism in the prolamellar body formation and its light-dependent dispersal by affecting the membrane association of POR. By the presence of a high concentration of phototransformable protochlorophyllide, prolamellar bodies can act as light sensors for plastid development. The modulation of plastid protein kinase and protein phosphatase activities by the NADPH/NADP(+) ratio is suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/A:1006451824312 | DOI Listing |
Protoplasma
October 2011
School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
Five-day-old etiolated wheat (Triticum aestivum L.) seedlings were transferred to 7°C (chill stress), 25°C (control), and 42°C (heat stress) and were kept in the dark or light for different time periods. Plastids were isolated from the control and stressed seedlings, and their low-temperature (77 K) fluorescence emission spectra were monitored.
View Article and Find Full Text PDFPhotosynth Res
January 2004
School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
The present study was conducted to observe the role of the root-shoot transition zone in the development of PS I and PS II in red light. The development of PS II and PS I was severely inhibited when root-shoot transition zones of wheat seedlings were exposed to red light (670 nm) of intensity 500 micromol m(-2) s(-1). Chlorophyll biosynthesis was also inhibited in these seedlings.
View Article and Find Full Text PDFPhotosynth Res
January 2002
Botanical Institute, Department of Plant Physiology, Göteborg University, Box 461, SE 405 30, Göteborg, Sweden,
The aurea and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum) are unable to synthesize the phytochrome chromophore from heme resulting in a block of this branch of the tetrapyrrole pathway. We have previously shown that these mutants also exhibit an inhibition of protochlorophyllide (Pchlide) synthesis and it has been hypothesised that this is due to feedback inhibition by heme on the synthesis of 5-aminolevulinic acid (ALA). In this study we have investigated Pchlide reaccumulation in cotyledons from etiolated wild-type (WT), aurea and yg-2 seedlings using low-temperature fluorescence spectroscopy.
View Article and Find Full Text PDFPhotosynth Res
January 2000
Botanical Institute, Department of Plant Physiology, Göteborg University, Box 461, SE 405 30, Göteborg, Sweden.
The effects of modulated ADP/ATP and NADPH/NADP(+) ratios, and of protein kinase inhibitors, on the in vitro reformation of phototransformable protochlorophyllide, i.e. the aggregated ternary complexes between NADPH, protochlorophyllide, and NADPH-protochlorophyllide oxidoreductase (POR, EC 1.
View Article and Find Full Text PDFPlanta
December 2001
School of Biological Sciences, University of Southampton, UK.
Inhibition of chromophore synthesis in the phytochrome-deficient aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) results in a severe reduction of protochlorophyllide (Pchlide) accumulation in dark-grown hypocotyls. Experiments with apophytochrome-deficient mutants indicate that the inhibition of Pchlide accumulation results from two separate effects: one dependent on the activity of phytochromes A and B1 and one phytochrome-independent effect that is attributed to a feedback inhibition of the tetrapyrrole biosynthesis pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!