A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of Photosystem II activity by saturating single turnover flashes in calcium-depleted and active Photosystem II. | LitMetric

Inhibition of Photosystem II activity by saturating single turnover flashes in calcium-depleted and active Photosystem II.

Photosynth Res

Minerva Avron Evenari Center for Photosynthesis Research, Department of Biological Chemistry, The Hebrew University, 91904, Jerusalem, Israel.

Published: January 2000

AI Article Synopsis

  • The study explored how continuous light and quick flashes affect Photosystem II (PS II) activity, focusing on conditions with depleted calcium (Ca²+) and manganese (Mn) and active PS II.
  • Active PS II showed greater vulnerability to flash-induced damage compared to Ca²+- and Mn-depleted PS II, which were more harmed under continuous light.
  • The research proposed that charge recombination in active PS II leads to harmful reactions producing singlet oxygen, while the alternative pathways in depleted PS II reduce their susceptibility to light-induced injury.

Article Abstract

Inhibition of Photosystem II (PS II) activity induced by continuous light or by saturating single turnover flashes was investigated in Ca(2+)-depleted, Mn-depleted and active PS II enriched membrane fragments. While Ca(2+)- and Mn-depleted PS II were more damaged under continuous illumination, active PS II was more susceptible to flash-induced photoinhibition. The extent of photoinactivation as a function of the duration of the dark interval between the saturating single turnover flashes was investigated. The active centres showed the most photodamage when the time interval between the flashes was long enough (32 s) to allow for charge recombination between the S(2) or S(3) and Q(B) (-) to occur. Illumination with groups of consecutive flashes (spacing between the flashes 0.1 s followed by 32 s dark interval) resulted in a binary oscillation of the loss of PS II-activity in active samples as has been shown previously (Keren N, Gong H, Ohad I (1995), J Biol Chem 270: 806-814). Ca(2+)- and Mn-depleted PS II did not show this effect. The data are explained by assuming that charge recombination in active PS II results in a back reaction that generates P(680) triplet and thence singlet oxygen, while in Ca(2+)- and Mn-depleted PS II charge recombination occurs through a different pathway, that does not involve triplet generation. This correlates with an up-shift of the midpoint potential of Q(A) in samples lacking Ca(2+) or Mn that, in term, is predicted to result in the triplet generating pathway becoming thermodynamically less favourable (G.N. Johnson, A.W. Rutherford, A. Krieger, 1995, Biochim. Biophys. Acta 1229, 201-207). The diminished susceptibility to flash-induced photoinhibition in Ca(2+)- and Mn-depleted PS II is attributed at least in part to this mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1023/A:1006435530817DOI Listing

Publication Analysis

Top Keywords

ca2+- mn-depleted
16
saturating single
12
single turnover
12
turnover flashes
12
charge recombination
12
inhibition photosystem
8
photosystem activity
8
flashes investigated
8
flash-induced photoinhibition
8
dark interval
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!