The Laser-PAM described in this paper is an adaptation of the PAM 101 fluorometer (Heinz Walz, Effeltrich, Germany) designed for remote sensing and non-invasive laboratory measurements of chlorophyll fluorescence. It is based on a 5 mW laser diode, emitting at 638 nm, and a Fresnel lens coupled to the ED-101 detection unit. Due to these modifications, measurements can be performed at a distance ranging from 0.3 to 2 m. The ED-101 detection unit has been modified to perform simultaneous measurements of both modulated fluorescence and light reflected by the leaf. Reflected light showed a good estimation of the photosynthetically active radiation measured exactly at the same area as the fluorescence. A particular advantage of the Laser-PAM fluorometer is its suitability for remote measurements under field conditions. Simultaneous fluorescence and gas-exchange measurements, performed on grapevine leaves, are reported as an example of an application for the Laser-PAM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/A:1011843131298 | DOI Listing |
Plant Cell Environ
January 2025
Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
The generation of spectral libraries using hyperspectral data allows for the capture of detailed spectral signatures, uncovering subtle variations in plant physiology, biochemistry, and growth stages, marking a significant advancement over traditional land cover classification methods. These spectral libraries enable improved forest classification accuracy and more precise differentiation of plant species and plant functional types (PFTs), thereby establishing hyperspectral sensing as a critical tool for PFT classification. This study aims to advance the classification and monitoring of PFTs in Shoolpaneshwar wildlife sanctuary, Gujarat, India using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and machine learning techniques.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.
View Article and Find Full Text PDFSci Data
January 2025
Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China.
Deforestation-induced forest loss largely affects both the carbon budget and ecosystem services. Subsequent forest regrowth plays a crucial role in ecosystem restoration and carbon replenishment. However, there is an absence of comprehensive datasets explicitly delineating the forest regrowth following deforestation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.
The upper ocean provides thermal energy to tropical cyclones. However, the impacts of the subsurface ocean on tropical cyclogenesis have been largely overlooked. Here, we show that the subsurface variabilities associated with the variation in the 26 °C isothermal depth have pronounced impacts on tropical cyclogenesis over global oceans.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Cyanobacterial blooms are increasingly becoming major threats to global inland aquatic ecosystems. Phycocyanin (PC), a pigment unique to cyanobacteria, can provide important reference for the study of cyanobacterial blooms warning. New satellite technology and cloud computing platforms have greatly improved research on PC, with the average number of studies examining it having increased from 5 per year before 2018 to 17 per year thereafter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!