Forest canopies support diverse assemblages of free-living mites. Recent studies suggest mite species complementarity between canopy and terrestrial soils is as high as 80-90%. However, confounding variation in habitat quality and resource patchiness between ground and canopy has not been controlled in previous comparative studies. We used experimental litter bags with standardized microhabitat structure and resource quality to contrast the colonization dynamics of 129 mite species utilizing needle accumulations on the ground vs in the canopy of Abies amabilis trees in a temperate montane forest in Canada. Mite abundance and species richness per litter bag were five to eight times greater on the ground than in the canopy, and composition differed markedly at family-, genus-, and species-level. Seventy-seven species (57%) were restricted to either ground or canopy litter bags, but many of these species were rare (n<5 individuals). Of 49 'common' species, 30.6% were entirely restricted to one habitat, which is considerably lower than most published estimates. In total, 87.5% of canopy specialists had rare vagrants on the ground, whereas only 51.9% of ground specialists had rare vagrants in the canopy. Canonical correspondence analysis of mite community structure showed high species turnover through time and a high degree of specialization for early-, mid-, and late-successional stages of litter decomposition, in both ground and canopy mites. In addition, distinct assemblages of ground-specialist mites dominated each elevation (800, 1000, and 1200 m), whereas few canopy-specialist mites had defined elevational preferences. This suggests that canopy mites may have greater tolerance for wide variation in environmental conditions than soil mites. The degree of species turnover between adjacent mountains also differed markedly, with 46.5% turnover of ground species, but 63.4% turnover of canopy species between the two montane areas. While ground and canopy assemblages are similar in total biodiversity, it appears that local mite richness (alpha diversity) is higher on the ground, whereas species turnover between sites (beta diversity) is higher in the canopy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-005-0262-6DOI Listing

Publication Analysis

Top Keywords

ground canopy
16
mite species
8
litter bags
8
species
6
canopy
6
experimental assessment
4
assessment biodiversity
4
biodiversity species
4
species turnover
4
turnover terrestrial
4

Similar Publications

Legume content (LC) in grass-legume mixtures is important for assessing forage quality and optimizing fertilizer application in meadow fields. This study focuses on differences in LC measurements obtained from unmanned aerial vehicle (UAV) images and ground surveys based on dry matter assessments in seven meadow fields in Hokkaido, Japan. We propose a UAV-based LC (LC) estimation and mapping method using a land cover map from a simple linear iterative clustering (SLIC) algorithm and a random forest (RF) classifier.

View Article and Find Full Text PDF

Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.

View Article and Find Full Text PDF

Platypuses are a unique freshwater mammal native to eastern Australia. They are semi-aquatic, predominantly nocturnal, and nest in burrows dug into the banks of waterbodies. Quantifying nesting burrow characteristics is challenging due to the species' cryptic nature.

View Article and Find Full Text PDF

Multi-Feature Fusion for Estimating Above-Ground Biomass of Potato by UAV Remote Sensing.

Plants (Basel)

November 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Timely and accurate monitoring of above-ground biomass (AGB) is of great significance for indicating crop growth status, predicting yield, and assessing carbon dynamics. Compared with the traditional time-consuming and laborious method through destructive sampling, UAV remote sensing provides a timely and efficient strategy for estimating biomass. However, the universality of remote sensing retrieval models with multi-feature fusion under different management practices and cultivars are unknown.

View Article and Find Full Text PDF

Estimation of potato leaf area index based on spectral information and Haralick textures from UAV hyperspectral images.

Front Plant Sci

November 2024

Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.

The Leaf Area Index (LAI) is a crucial parameter for evaluating crop growth and informing fertilization management in agricultural fields. Compared to traditional methods, UAV-based hyperspectral imaging technology offers significant advantages for non-destructive, rapid monitoring of crop LAI by simultaneously capturing both spectral information and two-dimensional images of the crop canopy, which reflect changes in its structure. While numerous studies have demonstrated that various texture features, such as the Gray-Level Co-occurrence Matrix (GLCM), can be used independently or in combination with crop canopy spectral data for LAI estimation, limited research exists on the application of Haralick textures for evaluating crop LAI across multiple growth stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!