The current success rate of cloned mice from adult somatic cell nuclei is very low, whereas it is relatively high for cloned mice from ES cell nuclei. In this experiment, we examined whether the success rate of cloning from somatic cells could be improved via nuclear transfer embryonic stem cells (ntES cells) established from somatic cell nuclei. We obtained 11 cloned mice and 68 ntES cell lines from the somatic cell nuclei of 7 mice, and cloned 41 mice were cloned from the ntES cell nuclei. Unexpectedly, the overall success rate of cloning from ntES cell nuclei in this series was no better than when using somatic cell nuclei. Interestingly, full-term cloned mice were produced only via ntES cells from two individuals, but not by direct nuclear transfer from the somatic cells, and vice versa. Ultimately, we were able to obtain clone mice from 6 out of 7 individuals using either somatic cells or ntES cells. Thus, although ntES cells as donor nuclei do not absolutely assure a better success rate for mouse cloning than somatic cells, to preserve and clone valuable individuals, we recommend that ntES cell lines be established. These can then be used as an unlimited source of donor nuclei for nuclear transfer, and thus complement conventional somatic cell nuclear transfer cloning approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1262/jrd.17061 | DOI Listing |
Ultrasound Med Biol
January 2025
Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand. Electronic address:
Objective: This study aims to evaluate the viability of a hypothesis for selective targeting of skin cancer cells by exploiting the spectral gap with healthy cells using analytical and numerical simulation.
Methods: The spectral gap was first identified using a viscoelastic dynamic model, with the physical and mechanical properties of healthy and cancerous skin cells deduced from previous experimental studies conducted on cell lines. The outcome of the analytical simulation was verified numerically using modal and harmonic analysis.
Curr Biol
January 2025
Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China. Electronic address:
Nanoplastics are common environmental pollutants. As of now, research has yet to explore how exposure to nanomaterials during gestation might influence the risk of developing Alzheimer's disease (AD) in offspring. Throughout the research, we assessed the AD pathology in adult offspring of mice prenatal 80 nm polystyrene nanoparticles (PS-NPs) exposure.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.
View Article and Find Full Text PDFCell Rep
January 2025
Center for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:
The visual system adapts to maintain sensitivity and selectivity over a large range of luminance intensities. One way that the retina maintains sensitivity across night and day is by switching between rod and cone photoreceptors, which alters the receptive fields and interneuronal correlations of retinal ganglion cells (RGCs). While these adaptations allow the retina to transmit visual information to the brain across environmental conditions, the code used for that transmission varies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!