Pairing between gypsy insulators facilitates the enhancer action in trans throughout the Drosophila genome.

Mol Cell Biol

Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.

Published: November 2005

The Suppressor of the Hairy wing [Su(Hw)] binding region within the gypsy retrotransposon is the best known chromatin insulator in Drosophila melanogaster. According to previous data, two copies of the gypsy insulator inserted between an enhancer and a promoter neutralize each other's actions, which is indicative of an interaction between the protein complexes bound to the insulators. We have investigated the role of pairing between the gypsy insulators located on homologous chromosomes in trans interaction between yellow enhancers and a promoter. It has been shown that trans activation of the yellow promoter strongly depends on the site of the transposon insertion, which is evidence for a role of surrounding chromatin in homologous pairing. The presence of the gypsy insulators in both homologous chromosomes even at a distance of 9 kb downstream from the promoter dramatically improves the trans activation of yellow. Moreover, the gypsy insulators have proved to stabilize trans activation between distantly located enhancers and a promoter. These data suggest that gypsy insulator pairing is involved in communication between loci in the Drosophila genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1265844PMC
http://dx.doi.org/10.1128/MCB.25.21.9283-9291.2005DOI Listing

Publication Analysis

Top Keywords

gypsy insulators
16
trans activation
12
pairing gypsy
8
drosophila genome
8
gypsy insulator
8
homologous chromosomes
8
enhancers promoter
8
activation yellow
8
gypsy
6
insulators
5

Similar Publications

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.

An exotic quantum mechanical ground state, i.e. the non-magnetic= 0 state, has been predicted for higher transition metalt2g4systems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

Background: The myelin sheath ensures efficient nerve impulse transmission along the axons. Remyelination is a spontaneous process that restores axonal insulation, promoting neuroprotection and recovery after myelin damage. There is an urgent need for new pharmacological approaches to remyelination and to improve the most effective molecules.

View Article and Find Full Text PDF

VO is a promising phase change material offering a large contrast of electric, thermal, and optical properties when transitioning from semiconductor to metallic phase. Here we show that a hybrid metamaterial obtained by proper combination of a VO layer and a nanodisk gold array provides a tunable plasmonic gap resonance in the infrared range. Specifically, we have designed and fabricated a metal-insulator-metal gap resonance by inserting sub-wavelength VO film between a flat gold layer and a gold nanodisk resonator array.

View Article and Find Full Text PDF

The work addresses the topic of the thermal study of high-voltage power cables installed inside plastic pipes in the absence of filling. The presence of air inside the pipe creates an insulating layer that does not favor heat exchange and makes the calculation of the flow rate more complex, as it is necessary to take into account the thermal phenomena of natural convection and radiation between the surface of the cable and the internal surface of the tube. The numerical model based on the finite element calculation was compared with the experimental results obtained on a simulacrum in which the temperatures on the different layers of the cable were measured.

View Article and Find Full Text PDF

2-Furaldehyde (2-FAL) is one of the main by-products of the degradation of hemicellulose, which is the solid material of the oil-paper insulating system of oil-filled transformers. For this reason, it has been suggested as a marker of the degradation of the insulating system; sensing devices for 2-FAL analysis in a wide concentration range are of high interest in these systems. An optical sensor system is proposed; this consists of a chemical chip, able to capture 2-FAL from the insulating oil, coupled with a surface plasmon resonance (SPR) probe, both realized on multimode plastic optical fibers (POFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!