Sulindac sulfide-induced apoptosis is enhanced by a small-molecule Bcl-2 inhibitor and by TRAIL in human colon cancer cells overexpressing Bcl-2.

Mol Cancer Ther

Division of Gastroenterology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.

Published: October 2005

Sulindac is a nonsteroidal anti-inflammatory drug (NSAID) that induces apoptosis in cultured colon cancer cells and in intestinal epithelia in association with its chemopreventive efficacy. Resistance to sulindac is well documented in patients with familial adenomatous polyposis; however, the molecular mechanisms underlying such resistance remain unknown. We determined the effect of ectopic Bcl-2 expression upon sulindac-induced apoptotic signaling in SW480 human colon cancer cells. Sulindac sulfide activated both the caspase-8-dependent and mitochondrial apoptotic pathways. Ectopic Bcl-2 attenuated cytochrome c release and apoptosis induction compared with SW480/neo cells. Coadministration of sulindac sulfide and the small-molecule Bcl-2 inhibitor HA14-1 increased apoptosis induction and enhanced caspase-8 and caspase-9 cleavage, Bax redistribution, and cytochrome c and second mitochondria-derived activator of caspase release. Given that sulindac sulfide activated caspase-8 and increased membrane death receptor (DR4 and DR5) protein levels, we evaluated its combination with the endogenous death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Coadministration of sulindac sulfide and TRAIL cooperatively enhanced apoptotic signaling as effectively as did HA14-1. Together, these data indicate that HA14-1 or TRAIL can enhance sulindac sulfide-induced apoptosis and represent novel strategies for circumventing Bcl-2-mediated apoptosis resistance in human colon cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-05-0137DOI Listing

Publication Analysis

Top Keywords

colon cancer
16
cancer cells
16
sulindac sulfide
16
human colon
12
sulindac
8
sulindac sulfide-induced
8
sulfide-induced apoptosis
8
small-molecule bcl-2
8
bcl-2 inhibitor
8
ectopic bcl-2
8

Similar Publications

Inflammatory bowel disease is a collection of intestinal disorders that cause inflammation in the digestive tract. Prolonged inflammation in the gastrointestinal tract is a major risk factor for colorectal cancer. The objective of this study was to fucus on gene expression levels of (KRT-14; associated with epithelial cell integrity) and enhancer of zeste homolog-1 (EZH-2; involved in cellular proliferation) in a IBD rat model in order to rule out impact of nutraceuticals (pumpkin seed oil; PSO) as a complementary approach to conventional treatments of IBD.

View Article and Find Full Text PDF

Colon cancer poses a significant threat to global health, and studies have shown a correlation between physical activity (PA) and the incidence of colon cancer. However, existing research has not quantitatively analyzed PA to evaluate its impact on the risk of colon cancer comprehensively. Data related to the study were obtained from the NHANES database for participants aged 20 and above between 2007 and 2018.

View Article and Find Full Text PDF

Epigenetic modulation of doxorubicin resistance and strategies for enhancing chemotherapeutic sensitivity.

Int Rev Cell Mol Biol

January 2025

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India. Electronic address:

With the rising global cancer burden, the dependency on chemotherapy also rises along with the complication of chemoresistance development. Studies on multi-drug resistant proteins provide a wide range of regulators, although the exact mechanism is not yet clearly understood. Epigenetic modifications play a vital role in the regulation of cellular processes and also in determining the efficacy of cancer therapy by modulating resistance development and tumor progression.

View Article and Find Full Text PDF

Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition.

Eur J Pharm Sci

January 2025

Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium. Electronic address:

The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (P). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [C]mannitol were established to monitor microtissue integrity.

View Article and Find Full Text PDF

In this study, new 2-indolinone-indole hybrid compounds (4a-s) carrying a benzoyl moiety were synthesized and their cytotoxic effects were examined against pancreatic (MIA-PaCa-2) and colon (HT-29 and HCT-116) cancer cells by MTT assays. Most of the tested compounds exhibited a better inhibitory activity and safety profile than the reference standard sunitinib malate against MIA-PaCa-2 and HCT-116 cancer cells. Compound 4e displayed the greatest cytotoxic effect on HCT-116 cell with an IC value of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!