Hantavirus Gc glycoprotein: evidence for a class II fusion protein.

J Gen Virol

Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile.

Published: November 2005

Hantavirus cell entry is promoted by its envelope glycoproteins, Gn and Gc, through cell attachment and by fusion between viral and endosomal membranes at low pH. However, the role of Gn and Gc in receptor binding and cell fusion has not yet been defined. In this work, a sequence presenting characteristics similar to those of class II fusion peptides (FPs) of alphavirus E1 and flavivirus E proteins is identified within the hantavirus Gc glycoprotein. A three-dimensional comparative molecular model based on crystallographic data of tick-borne encephalitis virus E protein is proposed for the Andes virus (ANDV) Gc ectodomain, which supports a feasible class II fusion-protein fold. In vitro experimental evidence is provided for the binding activity of the ANDV FP candidate to artificial membranes, as demonstrated by fluorescence anisotropy assays. Taken together, these results support the hypothesis that the Gc glycoprotein of hantaviruses and of other members of the family Bunyaviridae directs the viral fusion activity and that it may be classified as a class II viral fusion protein.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.81083-0DOI Listing

Publication Analysis

Top Keywords

hantavirus glycoprotein
8
class fusion
8
fusion protein
8
viral fusion
8
fusion
6
glycoprotein evidence
4
class
4
evidence class
4
protein hantavirus
4
hantavirus cell
4

Similar Publications

Multiple viruses that are highly pathogenic in humans are known to have evolved in bats. How bats tolerate infection with these viruses, however, is poorly understood. As viruses engage in a wide range of interactions with their hosts, it is essential to study bat viruses in a system that resembles their natural environment like bat-derived cellular models.

View Article and Find Full Text PDF

Hantaan virus (HTNV) and Puumala virus (PUUV) are pathogenic zoonoses found in Asia and Europe, respectively. We conducted a randomized Phase 1 clinical trial of individual HTNV and PUUV DNA vaccines targeting the envelope glycoproteins (GnGc), as well as a combined HTNV/PUUV DNA vaccine delivered at varying doses using the PharmaJet Stratis® needle-free injection system (NCT02776761). Cohort 1 and 2 vaccines consisted of 2 mg/vaccination of HTNV or PUUV plasmid, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Hemorrhagic fever with renal syndrome (HFRS) is a serious illness in Eurasia with no specific treatments currently available, highlighting the need for safe and effective vaccines.
  • Researchers developed three types of nucleic acid vaccine candidates (mRNA, naked DNA, and DNA in lipid nanoparticles) targeting the Hantaan virus to assess their potential against HFRS.
  • All vaccine candidates successfully triggered strong immune responses similar to an existing inactivated vaccine, with the mRNA vaccine showing a robust T-helper 1 cell response and the DNA-LNP producing higher neutralizing antibodies, suggesting that combining these vaccines could enhance their effectiveness.
View Article and Find Full Text PDF
Article Synopsis
  • * SAB-163 is a new therapeutic treatment developed from transchromosomic bovine plasma, showing strong effectiveness against multiple hantavirus strains and extended bioavailability in animal models.
  • * The treatment has demonstrated protective effects in hamsters when administered around the time of exposure and is now ready for phase 1 clinical trials after passing safety and efficacy tests.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on developing an mRNA vaccine for the Andes virus (ANDV) using two types of mRNA: regular uridine (U-mRNA) and N1-methylpseudouridine (m1Ψ-mRNA).
  • - Mice showed better immune responses with the m1Ψ-mRNA, but both mRNA types led to similar activation and effective antibody responses in subsequent tests with Syrian hamsters.
  • - The results indicate that the U-mRNA construct produced higher glycoprotein-binding antibodies, yet both vaccines effectively protected rodents from a lethal ANDV challenge, showing the vaccine's potential despite subtle differences.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!