Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases are a family of iron- and 2-oxoglutarate-dependent dioxygenases that negatively regulate the stability of several proteins that have established roles in adaptation to hypoxic or oxidative stress. These proteins include the transcriptional activators HIF-1alpha and HIF-2alpha. The ability of the inhibitors of HIF prolyl 4-hydroxylases to stabilize proteins involved in adaptation in neurons and to prevent neuronal injury remains unclear. We reported that structurally diverse low molecular weight or peptide inhibitors of the HIF prolyl 4-hydroxylases stabilize HIF-1alpha and up-regulate HIF-dependent target genes (e.g. enolase, p21(waf1/cip1), vascular endothelial growth factor, or erythropoietin) in embryonic cortical neurons in vitro or in adult rat brains in vivo. We also showed that structurally diverse HIF prolyl 4-hydroxylase inhibitors prevent oxidative death in vitro and ischemic injury in vivo. Taken together these findings identified low molecular weight and peptide HIF prolyl 4-hydroxylase inhibitors as novel neurological therapeutics for stroke as well as other diseases associated with oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586128 | PMC |
http://dx.doi.org/10.1074/jbc.M504963200 | DOI Listing |
Int J Nanomedicine
December 2024
Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
Chronic wounds in diabetic patients experience significant clinical challenges due to compromised healing processes. Hypoxia-inducible factor-1 alpha (HIF-1α) is a critical regulator in the cellular response to hypoxia, enhancing angiogenesis and tissue restoration. Nevertheless, the cellular response to the developed chronic hypoxia within diabetes is impaired, likely due to the destabilization of HIF-1α via degradation by prolyl hydroxylase domain (PHD) enzymes.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan.
Hypoxia is a critical microenvironmental factor that induces tumorigenesis and cancer progression, including metastasis. The highly dynamic nature of the extracellular matrix (ECM) plays a crucial role in metastasis. Collagens are the predominant component of structural proteins embedded within the ECM.
View Article and Find Full Text PDFAnemia is a major clinical manifestation seen in myelodysplastic syndromes (MDS). Treatment options for anemia in low-risk MDS are limited. Especially, oral medication which is uniformly effective for anemia in low-risk MDS is required.
View Article and Find Full Text PDFNutrients
November 2024
Dialysis Center, Tesseikai Neurosurgical Hospital, 28-1 Nakanohonmachi, Shijonawate 575-8511, Japan.
Background/objectives: Zinc supplementation induces metallothionein, leading to reduced serum copper levels. Conversely, serum copper concentrations tend to rise with the use of HIF-PH inhibitors.
Methods: To establish a safe level of zinc supplementation that avoids copper deficiency, serum copper and zinc concentrations measured every three months were retrospectively analyzed over five years in 50 patients undergoing hemodialysis.
J Biochem
December 2024
Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
Since low oxygen conditions below physiological levels, hypoxia, is associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxia response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) have attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs (HIF-α).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!