Benzaldehyde lyase (BAL) is a thiamin diphosphate-dependent enzyme, which catalyzes the breakdown of (R)-benzoin to benzaldehyde. In essence, this is the reverse of the carboligation reaction catalyzed by benzoylformate decarboxylase (BFD). Here, we describe the first steps towards understanding the factors influencing BFD to form a CC bond under conditions wherein BAL will cleave the same bond. What are the similarities and differences between these two enzymes that result in the different catalytic activities? The X-ray structures of BFD and pyruvate decarboxylase (PDC) were used as templates for modeling benzaldehyde lyase. The model shows that a glutamine residue, Gln113, replaces the active site histidines of BFD and PDC. Replacement of the Gln113 by alanine or histidine reduced the value of k(cat) for lyase activity by more than 200-fold. The residues in BFD interacting with the phenyl ring of benzoylformate have similarly positioned counterparts in BAL but Ser26, the residue known to interact with the carboxylate group of benzoylformate, has been replaced by an alanine (Ala28). The BAL A28S variant exhibited 7% of WT activity in the BAL assay but, in the most intriguing result, this variant was able to catalyze the decarboxylation of benzoylformate. Conversely, the BFD S26A variant was unable to cleave benzoin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2005.08.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!