The acoustic scanner noise that is generated by rapid gradient switching in echo planar imaging (EPI) is an important confounding factor in auditory fMRI. "Sparse imaging" designs overcome the influence of scanner noise on stimulus presentation by acquiring single brain volumes following a silent stimulus presentation period. However, conventional sparse imaging requires assumptions about the time-to-peak of the evoked hemodynamic response and reduces the amount of EPI data which can be acquired and hence statistical power. In this article, we describe an "interleaved silent steady state" (ISSS) sampling scheme in which we rapidly acquire a set of EPI volumes following each silent stimulus presentation period. We avoid T1-related signal decay during the acquisition of the EPI volumes by maintaining the steady state longitudinal magnetization with a train of silent slice-selective excitation pulses during the silent period, ensuring that signal contrast is constant across successive scans. A validation study comparing ISSS to conventional sparse imaging demonstrates that ISSS imaging provides time course information that is absent in conventional sparse imaging data. The ISSS sequence has a temporal resolution like event-related (ER) imaging within a single trial (unlike conventional sparse imaging, where ER-like temporal resolution can only be achieved by compiling data across many jittered trials of the same stimulus type). This temporal resolution within trials makes ISSS particularly suitable for experiments in which a) scanner noise would interfere with the perception and processing of the stimulus; b) stimuli are several seconds in duration, and activation is expected to evolve and change as the stimulus unfolds; and c) it is impractical to present a single stimulus more than once (for example, repetition priming or familiarity effects would be expected).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2005.08.025DOI Listing

Publication Analysis

Top Keywords

sparse imaging
20
conventional sparse
16
scanner noise
12
stimulus presentation
12
temporal resolution
12
imaging
9
silent steady
8
steady state
8
isss imaging
8
auditory fmri
8

Similar Publications

While radiation hazards induced by cone-beam computed tomography (CBCT) in image-guided radiotherapy (IGRT) can be reduced by sparse-view sampling, the image quality is inevitably degraded. We propose a deep learning-based multi-view projection synthesis (DLMPS) approach to improve the quality of sparse-view low-dose CBCT images. In the proposed DLMPS approach, linear interpolation was first applied to sparse-view projections and the projections were rearranged into sinograms; these sinograms were processed with a sinogram restoration model and then rearranged back into projections.

View Article and Find Full Text PDF

The antibiotic metronidazole (MNZ) has gained interest as a potential MRI contrast agent for imaging hypoxia. N-labeled MNZ can be efficiently hyperpolarized via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), but the envisioned MRI approach requires that MNZ rapidly undergoes structural changes in hypoxic environments with significant N frequency differences manifested in its downstream metabolic products. We have performed NMR studies of the anticipated metabolic product amino-MNZ (despite anticipated stability concerns) accompanied by computational density functional theory (DFT) studies to predict the N chemical shifts of different relevant species.

View Article and Find Full Text PDF

Background: Globally, adult Indigenous people, including Aboriginal Australians, have a high burden of chronic respiratory disorders, and bronchiectasis is no exception. However, literature detailing bronchiectasis disease characteristics among adult Indigenous people is sparse. This study assessed the clinical profile of bronchiectasis among adult Aboriginal Australians and compared against previously published international bronchiectasis registry reports.

View Article and Find Full Text PDF

Background: Disturbances in calcium and phosphorus homeostasis resulting from chronic kidney disease (CKD) may lead to atherosclerotic changes in blood vessels, potentially altering bone marrow perfusion. Our study aimed to investigate vertebral bone marrow perfusion using dynamic contrast-enhanced (DCE) MRI with a pharmacokinetic model. We also measured possible changes in water and fat content and bony trabeculae using T2* quantification, MR spectroscopy (MRS), and microcomputed tomography (μCT).

View Article and Find Full Text PDF

Spiking neurons are essential for building energy-efficient biomimetic spatiotemporal systems because they communicate with other neurons using sparse and binary signals. However, the achievable high density of artificial neurons having a capacitor for emulating the integrate function of biological neurons has a limit. Furthermore, a low-voltage operation (<1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!