Background/aims: Chronic ethanol consumption inhibits liver regeneration. We examined the effects of chronic ethanol consumption on two mitogen-activated protein kinases in relation to induction of cell cycle proteins after partial hepatectomy (PH).

Methods: Male Wistar rats were ethanol-fed (EF) or pair-fed (PF) for 16 weeks before PH. Hepatic activation of extracellular signal regulated kinase (ERK)1/2, p38 kinase and expression of cyclinD1, cyclin-dependent kinase-4 (cdk4) and proliferating cell nuclear antigen (PCNA) were studied.

Results: In PF rats, PH-induced p38 activation was evident at 2h and was maximal at 12h. There was a close temporal relationship between p38 activation, cyclin D1 and PCNA expression. Alcohol exposure reduced p38 activation, cyclin D1 and PCNA, each by approximately 50%. ERK1/2 activation occurred during the first 2h post-PH in both EF and PF rats, and there was no later increase in PF rats. In vivo inhibition of p38 suppressed PCNA expression whereas the effect of ERK1/2 inhibition was inconsistent.

Conclusions: p38 kinase activation is linked temporally with cyclin D1 expression after PH and appears to exert cell cycle control in the adult liver. p38 signaling also appears to be a target for the inhibitory effect of chronic alcohol on liver regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2005.07.031DOI Listing

Publication Analysis

Top Keywords

p38 kinase
12
activation cyclin
12
p38 activation
12
p38
8
kinase activation
8
partial hepatectomy
8
chronic ethanol
8
ethanol consumption
8
liver regeneration
8
cell cycle
8

Similar Publications

Idiopathic pulmonary fibrosis (PF) is an irreversible and chronic inflammatory condition with limited therapeutic options and a high mortality rate. We aimed to determine the possible role and mechanisms of wogonin (WGN) on PF. A rat model of PF was established with intratracheally administrated with bleomycin (BLM), followed by intravenously injecting with WGN and weekly body weight measurements for four weeks.

View Article and Find Full Text PDF

Objectives: Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs.

View Article and Find Full Text PDF

MAP Kinase Signaling at the Crossroads of Inflammasome Activation.

Immunol Rev

January 2025

Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.

Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Peroxiredoxin 6 (PRDX6) is one of the Peroxiredoxin family members with only 1-Cys, using glutathione as the electron donor to reduce peroxides in cells. PRDX6 has been frequently studied and its expression was associated with poor prognosis in many tumors. However, the expression of PRDX6 in multiple myeloma (MM) and its relevance with MM remain unclear.

View Article and Find Full Text PDF

Nucleus-translocated GCLM promotes chemoresistance in colorectal cancer through a moonlighting function.

Nat Commun

January 2025

Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.

Metabolic enzymes perform moonlighting functions during tumor progression, including the modulation of chemoresistance. However, the underlying mechanisms of these functions remain elusive. Here, utilizing a metabolic clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout library screen, we observe that the loss of glutamate-cysteine ligase modifier subunit (GCLM), a rate-limiting enzyme in glutathione biosynthesis, noticeably increases the sensitivity of colorectal cancer (CRC) cells to platinum-based chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!