TCDD was assessed as a biological response modifier for increasing MMC cytotoxicity through aryl hydrocarbon receptor (AhR) activation and increasing levels of bioreductive enzymes. Human MCF-7 cells were exposed to TCDD, MMC and combinations thereof under aerobic or hypoxic conditions. Cytotoxicity, enzyme activities (NQO1, XO, XDH, CYPR, CYP1A, GST and UGT) and intracellular reactive oxygen species (ROS) were subsequently measured. Under aerobic conditions, TCDD alone had no significant toxicity but combinations of TCDD and MMC significantly increased cell death. LD50 values were: MMC alone, 0.89 +/- 0.04 microM; TCDD co-treatment, 0.26 +/- 0.007 microM (P = 0.008 vs. MMC alone) and TCDD pre-treatment, 0.04 +/- 0.01 microM (P = 0.003 vs. MMC alone). Under hypoxia, TCDD itself caused significant cell death, likely due to increased ROS, but no combinations of MMC/TCDD altered the LD50 of MMC. Significant changes in enzyme activities were caused by TCDD under aerobic but not hypoxic conditions while MMC decreased the activity of its activating enzymes regardless of oxygen tension. Greater toxicity of MMC/TCDD combinations in aerobic culture, were most likely mediated by increased levels of bioreductive enzymes caused through AhR activation. Data presented herein also demonstrate that low oxygen tension decreases AhR activation and signaling and increases the inherent toxicity of TCDD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2005.07.021DOI Listing

Publication Analysis

Top Keywords

oxygen tension
12
cell death
12
ahr activation
12
tcdd
10
biological response
8
response modifier
8
reactive oxygen
8
oxygen species
8
mmc
8
levels bioreductive
8

Similar Publications

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Phytochlorin-Based Sonosensitizers Combined with Free-Field Ultrasound for Immune-Sonodynamic Cancer Therapy.

Adv Mater

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.

Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers.

View Article and Find Full Text PDF

Oxygen transport across the lifespan of male Sprague Dawley rats.

Biogerontology

January 2025

Song Biotechnologies LLC., Baltimore, MD, 21030, USA.

Human populations are experiencing unprecedented growth and longevity with lingering knowledge gaps of the characteristics, mechanisms, and pathologies of senescence. Invasive measurements and long-term control conditions for longitudinal studies are infeasible, necessitating the need for surrogate animal models. Rats have short lifespans (2-3 years) with translatable cardiovascular systems, and Sprague Dawley microcirculatory preparations are key to studying the oxygen transport mechanisms critical to the loss of skeletal muscle function in aging.

View Article and Find Full Text PDF

In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!