Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biochemical compositions of seven strains of marine cryptomonad and a rhodophyte were determined in logarithmic phase batch (1.4 L flask) and semi-continuous (10 L carboy) culture. Lipid ranged from 13% to 28%, protein ranged from 53% to 68%, and carbohydrate ranged from 9% to 24% of the organic weight. The major lipid classes in the species examined were polar lipids (78-88% of total lipid). The major sterol in the Cryptophyceae and the Rhodophyceae was 24-methylcholesta-5,22E-dien-3beta-ol (62-99% of total sterols); which is also the major sterol in some diatoms and haptophytes. Smaller proportions of cholest-5-en-3beta-ol (1-17.7%) were also found in the Cryptophyceae. Most cryptomonads contained high proportions of the n-3 polyunsaturated fatty acids (PUFA), 18:3n-3 (20.7-29.9% of the total fatty acids), 18:4n-3 (12.5-30.2%), 20:5n-3 (7.6-13.2%) and 22:6n-3 (6.4-10.8%). However, the blue-green cryptomonad Chroomonas placoidea was characterized by a low proportion of 22:6n-3 (0.2% of total fatty acids), and a significant proportion of 22:5n-6 (4.5%), and the presence of 24-ethylcholesta-5,22E-dien-3beta-ol (35.5% of total sterols). The fatty acid composition of the rhodophyte Rhodosorus sp. was similar to those of the Cryptophyceae except for lower proportions of 18:4n-3 and lack of C21 and C22 PUFA. It is postulated that the primary endosymbiosis of a photosynthetic n-3 C18 PUFA-producing prokaryote and a eukaryotic host capable of chain elongation and desaturation of exogenous PUFA, resulted in the Rhodophyceae capable of producing n-3 C20 PUFA. The secondary endosymbiosis of a photosynthetic n-3 C20 PUFA-producing eukaryote (such as a Rhodosorus sp. like-rhodophyte) and a eukaryotic host capable of further chain elongation and desaturation, resulted in the Cryptophyceae being capable of producing n-3 C20 and C22 PUFA de novo. Selected isolates were examined further in feeding trials with juvenile Pacific oysters (Crassostrea gigas). Rhodomonas salina CS-24(containing elevated 22:6n-3) produced high growth rates in oysters; equivalent to the microalga commonly used in aquaculture, Isochrysis sp. (T.ISO).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2005.08.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!