This study aimed to examine the expression and function of P2 receptors of the rat tail and mesenteric arteries during maturation and ageing (4, 6 and 12 weeks, 8 and 24 months). Functional studies and receptor expression by immunohistochemistry revealed a heterogeneous phenotype of P2 receptor subtypes depending on artery age. The purinergic component of nerve-mediated responses in the tail artery was greater in younger animals; similarly responses to ATP and alpha,beta-meATP and the expression of P2X1 receptors decreased with age. Contractile responses to 2-MeSADP decreased with age, and were absent at 8 and 24 months; P2Y1 receptor expression followed this pattern. UTP-induced contractions and P2Y2 receptor expression also decreased with age. The mesenteric artery contracted to UTP, responses at 4 and 6 weeks were larger than at other ages although P2Y2 receptor expression did not significantly differ with age. 2-MeSADP induced relaxation of the mesenteric artery, responses being greatest at 6 weeks and decreased thereafter, which was mimicked by the P2Y1 receptor immunostaining. We speculate that the dramatic changes in expression of P2 receptors in the rat tail artery, compared to the mesenteric artery, during development and ageing are related to the role of the tail artery in temperature regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2005.08.019 | DOI Listing |
Sheng Li Xue Bao
December 2024
Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, China.
The aim of this study was to conduct experiments using laser speckle contrast imaging (LSCI) technology to investigate the effects of high salt diet on renal vascular reactivity in mice. LSCI is a technology for monitoring blood flow based on the laser speckle principle. It has been widely used to detect microcirculatory functions in tissues such as the skin and brain.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary.
Hydrogen sulfide (HS) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates HS-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (NaS), which is a fast-releasing HS donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.
Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI.
Cureus
December 2024
Department of Gastroenterology, Scripps Mercy Hospital, San Diego, USA.
Hemosuccus pancreaticus (HP) is a rare, life-threatening cause of upper gastrointestinal bleeding, often linked to chronic pancreatitis and pseudoaneurysm rupture into the pancreatic duct. However, its occurrence in acute necrotizing pancreatitis with decompensated cirrhosis is exceedingly rare and poses significant diagnostic and treatment challenges. We report a case of a 34-year-old male with decompensated alcoholic cirrhosis who developed hemorrhagic shock from HP following acute necrotizing pancreatitis.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!