Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death worldwide. In light of the very poor 5 year survival new therapeutic approaches are mandatory. Several reports indicate that the epidermal growth factor receptor (EGFR) is expressed frequently in HCC, most likely contributing to the aggressive growth characteristics of these tumors. Cetuximab, a chimeric monoclonal IgG1 antibody directed against the EGFR, potently suppresses the growth of various cancers but its effect on HCC remains to be explored. We therefore studied the antineoplastic potency of cetuximab in human HCC cells alone and in combination with growth factor tyrosine-kinase inhibition (TKI) or HMG-CoA-reductase inhibiton or conventional cytostatics. Cetuximab inhibited growth of p53 wild-type HepG2 hepatocellular cancer cells in a time- and dose-dependent manner. Cetuximab treatment resulted in arresting the cell cycle in the G(1)/G(0)-phase due to an increase of expression of the cyclin-dependent kinase inhibitors p21(Waf1/CIP1) and p27(Kip1) and a decrease in cyclin D1 expression. Additionally, we observed a moderate increase in apoptosis as demonstrated by caspase-3 activation. Combining cetuximab with TKIs (erlotinib or AG1024) or the HMG-CoA-reductase inhibitor fluvastatin or doxorubicin resulted in synergistic antiproliferative effects. In contrast, p53 mutated Huh-7 hepatocellular cancer cells proved to be less sensitive towards cetuximab, but when combined with TKIs or fluvastatin or doxorubicin a pronounced reduction of cell growth was observed. To conclude, our study may provide a rationale for future clinical investigations of cetuximab combination therapy for growth control of hepatocellular cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2005.09.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!