Phosphodiesterase 3B (PDE3B), a major PDE isoform in adipocytes, plays a pivotal role in the anti-lipolytic action of insulin. Insulin phosphorylates and activates PDE3B in a phosphatidylinositol 3-kinase-dependent manner. We identified a new 50 kDa protein that is phosphorylated by insulin and is co-immunoprecipitated with PDE3B by anti-PDE3B antibodies in rat adipocytes. The insulin-induced phosphorylation of the 50 kDa protein was also detected in a cell free system against the N-terminal and the catalytic regions, which are more than 700 amino acids apart recognize the 50 kDa protein, suggesting that it is not a proteolytic product, but an associated protein with PDE3B. Phosphoamino acid analysis indicated that both serine and threonine residues in the 50 kDa protein were phosphorylated, but only serine residues in PDE3B were phosphorylated. Therefore, it appears likely that this is a new protein which is associated with PDE3B.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.09.144DOI Listing

Publication Analysis

Top Keywords

kda protein
20
identified kda
8
protein associated
8
phosphorylated insulin
8
rat adipocytes
8
protein phosphorylated
8
protein
7
pde3b
6
kda
5
newly identified
4

Similar Publications

Improving polyketide biosynthesis by rescuing the translation of truncated mRNAs into functional polyketide synthase subunits.

Nat Commun

January 2025

State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China.

Modular polyketide synthases (mPKSs) are multidomain enzymes in bacteria that synthesize a variety of pharmaceutically important compounds. mPKS genes are usually longer than 10 kb and organized in operons. To understand the transcriptional and translational characteristics of these large genes, here we split the 13-kb busA gene, encoding a 456-kDa three-module PKS for butenyl-spinosyn biosynthesis, into three smaller separately translated genes encoding one PKS module in an operon.

View Article and Find Full Text PDF

Identification and characterization of the Cul t 1 as major allergen from biting midge Culicoides tainanus.

Mol Immunol

January 2025

Department of Cell Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563003, China. Electronic address:

Background: Midges are widely distributed globally. They can transmit numerous serious diseases as well as trigger an allergic reaction in the host. Their saliva contains a variety of proteins that act as sensitizers to stimulate the host's immune response, leading to IgE-mediated allergic symptoms.

View Article and Find Full Text PDF

The effect of the foreign body response on drug elution from subdermal delivery systems.

Biomaterials

January 2025

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA. Electronic address:

Contrasting findings are presented in the literature regarding the influence of foreign body response (FBR) on drug release from implantable drug delivery systems. To this end, here we sought direct evidence of the effect of the fibrotic tissue on subcutaneous drug release from long-acting drug delivery implants. Specifically, we investigated the pharmacokinetic impact of fibrotic encapsulation on a small molecule drug, islatravir (293 Da), and a large protein, IgG (150 kDa), administered via biocompatible implants.

View Article and Find Full Text PDF

Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .

Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .

View Article and Find Full Text PDF

Background: Ribosomal protein S6 kinase 1 (p70S6K1) is a member of the AGC family of serine/threonine kinases which plays a role in various cellular processes, including protein synthesis, cell growth, and survival. Dysregulation of p70S6K1, characterized by its overexpression and/or hyperactivation, has been implicated in numerous human pathologies, particularly in several types of cancer. Therefore, generating active, recombinant p70S6K1 is critical for investigating its role in cancer biology and for developing novel diagnostic or therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!