The Lotka-Volterra predator-prey model with prey density dependence shows the final prey density to be independent of its vital rates. This result assumes the community to be well mixed so that encounters between predators and prey occur as a product of the landscape densities, yet empirical evidence suggests that over small spatial scales this may not be the normal pattern. Starting from an individual-based model with neighborhood interactions and movements, a deterministic approximation is derived, and the effect of local spatial structure on equilibrium densities is investigated. Incorporating local movements and local interactions has important consequences for the community dynamics. Now the final prey density is very much dependent on its birth, death, and movement rates and in ways that seem counterintuitive. Increasing prey fecundity or mobility and decreasing the coefficient of competition can all lead to decreases in the final density of prey if the predator is also relatively immobile. However, analysis of the deterministic approximation makes the mechanism for these results clear; each of these changes subtly alters the emergent spatial structure, leading to an increase in the predator-prey spatial covariance at short distances and hence to a higher predation pressure on the prey.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/432035 | DOI Listing |
NPJ Biofilms Microbiomes
January 2025
Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases.
View Article and Find Full Text PDFSleep Med
January 2025
Department of Neurology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China. Electronic address:
Objective: This study examined the relationship between diffusion tensor imaging indicators and brain network characteristics in patients with cerebral small vessel disease (CSVD) with (CSVD + S) and without (CSVD-S) sleep disturbance. We explored the feasibility of using these imaging biomarkers to investigate the pathophysiological mechanisms underlying sleep disturbance in patients with CSVD.
Methods: A total of 146 patients with CSVD and 84 healthy controls were included.
J Expo Sci Environ Epidemiol
January 2025
Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Background: Elemental analysis of teeth allows for exposure assessment during critical windows of development and is increasingly used to link early life exposures and health. The measurement of inorganic elements in teeth is challenging; laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the most widely used technique.
Objective: Both synchrotron x-ray fluorescence (SXRF) and LA-ICP-MS have the capability to measure elemental distributions in teeth with each having distinct advantages and disadvantages.
Sci Rep
January 2025
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Orgánica, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
Polymer blending is an interesting strategy to broaden the combination of properties available for a variety of applications. To understand the behaviour of the new materials obtained as well as the influence of the fabrication parameters used, methods to analyse the distribution of polymers in the blend with resolution below the micrometer are required. In this work, we demonstrate the capability of focused ion beam (FIB) tomography to provide 3D information of the polymer distribution in objects obtained by blending acrylonitrile-styrene-acrylate (ASA) with polycarbonate (PC) (50 wt%), fabricated by Fused Filament Fabrication (FFF) and by Injection Moulding (IM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!