Previously we showed L-4F, a novel apolipoprotein A-I (apoA-I) mimetic, improved vasodilation in 2 dissimilar models of vascular disease: hypercholesterolemic LDL receptor-null (Ldlr(-/-)) mice and transgenic sickle cell disease mice. Here we determine the mechanisms by which D-4F improves vasodilation and arterial wall thickness in hypercholesterolemic Ldlr(-/-) mice and Ldlr(-/-)/apoA-I null (apoA-I(-/-)), double-knockout mice. Ldlr(-/-) and Ldlr(-/-)/apoA-I(-/-) mice were fed Western diet (WD) with and without D-4F. Oral D-4F restored endothelium- and endothelial NO synthase (eNOS)-dependent vasodilation in direct relationship to duration of treatments and reduced wall thickness in as little as 2 weeks in vessels with preexisting disease in Ldlr(-/-) mice. D-4F had no effect on total or HDL cholesterol concentrations but reduced proinflammatory HDL levels. D-4F had no effect on plasma myeloperoxidase concentrations but reduced myeloperoxidase association with apoA-I as well as 3-nitrotyrosine in apoA-I. D-4F increased endothelium- and eNOS-dependent vasodilation in Ldlr(-/-)/apoA-I(-/-) mice but did not reduce wall thickness as it had in Ldlr(-/-) mice. Vascular endothelial cells were treated with 22(R)-hydroxycholesterol with and without L-4F. 22(R)-Hydroxycholesterol decreased NO (*NO) and increased superoxide anion (O2*-) production and increased ATP-binding cassette transporter-1 and collagen expression. L-4F restored *NO and O2*- balance, had little effect on ATP-binding cassette transporter-1 expression, but reduced collagen expression. These data demonstrate that although D-4F restores vascular endothelial cell and eNOS function to increase vasodilation, HDL containing apoA-I, or at least some critical concentration of the antiatherogenic lipoprotein, is required for D-4F to decrease vessel wall thickness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480357 | PMC |
http://dx.doi.org/10.1161/01.RES.0000190634.60042.cb | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!