In this report we have examined changes in cell growth parameters, cell cycle effectors, and signaling pathways that accompany thyrotrope growth arrest by thyroid hormone (TH) and growth resumption after its withdrawal. Flow cytometry and immunohistochemistry of proliferation markers demonstrated that TH treatment of thyrotrope tumors resulted in a reduction in the fraction of cells in S-phase that is restored upon TH withdrawal. This is accompanied by dephosphorylation and rephosphorylation of retinoblastoma (Rb) protein. The expression levels of cyclin-dependent kinase 2 and cyclin A, as well as cyclin-dependent kinase 1 and cyclin B, were decreased by TH, and after withdrawal not only did these regulators of Rb phosphorylation and mitosis increase in their expression but so too did the D1 and D3 cyclins. We also noted a rapid induction and subsequent disappearance of the type 5 receptor for the growth inhibitor somatostatin with TH treatment and withdrawal, respectively. Because somatostatin can arrest growth by activating MAPK pathways, we examined these pathways in TtT-97 tumors and found that the ERK pathway and several of its upstream and downstream effectors, including cAMP response element binding protein, were activated with TH treatment and deactivated after its withdrawal. This led to the hypothesis that TH, acting through increased type 5 somatostatin receptor, could activate the ERK pathway leading to cAMP response element binding protein-dependent decreased expression of critical cell cycle proteins, specifically cyclin A, resulting in hypophosphorylation of Rb and its subsequent arrest of S-phase progression. These processes are reversed when TH is withdrawn, resulting in an increase in the fraction of S-phase cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2005-1013 | DOI Listing |
Stem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.
FLT3 mutations occur in approximately 25% of all acute myeloid leukemia (AML) patients. While several FLT3 inhibitors have received FDA approval, their use is currently limited to combination therapies with chemotherapy, as resistance occurs, and efficacy decreases when the inhibitors are used alone. Given the highly heterogeneous nature of AML, there is an urgent need for novel targeted therapies that address the disease from multiple angles.
View Article and Find Full Text PDFCell Div
January 2025
Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.
Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.
Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.
Cell Div
January 2025
Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China.
Objective: This study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms.
Methods: ANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle distribution was analyzed using flow cytometry.
Cardiooncology
January 2025
Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Background: Dexrazoxane has been studied for its ability to prevent anthracycline-induced cardiac dysfunction (AICD) in several trials but its use in clinical practice remains limited. This is related to the low to moderate quality of the generated evidence, safety concerns and restricted prescribing indications. Additional randomized trials are needed before this drug can be routinely integrated into cardio-oncology clinical practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!