Excitation-transcription coupling in smooth muscle.

J Physiol

Department of Pharmacology, University of Vermont, 89 Beaumont Ave., Burlington, VT 05405, USA.

Published: January 2006

Calcium (Ca2+) signals affect virtually every biological process, including both contraction and gene transcription in smooth muscle. Ca2+-regulated gene transcription is known to be important for both physiological and pathological responses in smooth muscle. The aim of this review is to discuss the current understanding of gene transcription regulated by excitation through Ca2+ signalling using a comparison of the two most characterized Ca2+-regulated transcription factors in smooth muscle, Ca2+-cyclic AMP response element binding protein (CREB) and nuclear factor of activated T-cells (NFAT). Recent studies have shown commonalities and differences in the regulation of CREB and NFAT through both voltage- and non-voltage-gated Ca2+ channels that lead to expression of smooth muscle cell specific differentiation markers as well as markers of proliferation. New insights into the regulation of specific genes through companion elements on the promoters of Ca2+-regulated genes have led to new models for transcriptional regulation by Ca2+ that are defined both by the source and duration of the Ca2+ signal and the composition of enhancer elements found within the regulatory regions of specific genes. Thus the combination of signalling pathways elicited by particular Ca2+ signals affect selective promoter elements that are key to the ultimate pattern of gene transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464285PMC
http://dx.doi.org/10.1113/jphysiol.2005.098426DOI Listing

Publication Analysis

Top Keywords

smooth muscle
20
gene transcription
16
ca2+ signals
8
signals affect
8
specific genes
8
ca2+
6
smooth
5
muscle
5
transcription
5
excitation-transcription coupling
4

Similar Publications

Purpose: Our aim was to examine the expression of PAX6 and keratocyte-specific markers in human limbal stromal cells (LSCs) in congenital aniridia (AN) and in healthy corneas, .

Methods: Primary human LSCs were extracted from individuals with aniridia (AN-LSCs) ( = 8) and from healthy corneas (LSCs) ( = 8). The cells were cultured in either normal-glucose serum-containing cell culture medium (NGSC-medium) or low-glucose serum-free cell culture medium (LGSF-medium).

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Background: Patient-specific, 3-dimensional printed, tissue engineered vascular grafts (3DTEVGs) are manufactured to optimize hemodynamic performance and to accommodate growth. We evaluate growth outcomes of 3DTEVGs compared with standard grafts for pulmonary artery reconstruction in porcine models.

Methods: Magnetic resonance imaging (MRI) with 4-dimensional flow data was acquired in porcine models (n = 8).

View Article and Find Full Text PDF

Background: Diabetic erectile dysfunction (DMED) has a high incidence and is poorly treated.

Aim: This study investigates fibrosis's genetic profiling and explores potential mechanisms for DMED.

Methods: The DMED model was constructed in rats using streptozotocin.

View Article and Find Full Text PDF

Decellularized tissue-engineered vascular grafts (dTEVGs) exhibit superior biocompatibility, anti-infection properties and repair potential, contributing to better patency and making them a more ideal choice for arteriovenous grafts (AVGs) in hemodialysis compared to chemically synthesized grafts. However, the unsatisfactory reendothelialization and smooth muscle remodeling of current dTEVGs limit their advantages. In this study, we investigated the use of elastase to improve the porosity of elastic fiber layers in dTEVGs, aiming to promote cell infiltration and achieve superior reendothelialization and smooth muscle remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!