The DNA-binding ETS transcription factor Spi-1/PU.1 is of central importance in determining the myeloid-erythroid developmental switch and is required for monocyte and osteoclast differentiation. Many monocyte genes are dependent upon this factor, including the gene that codes for interleukin-1beta. It has long been known that the conserved ETS DNA-binding domain of Spi-1/PU.1 functionally cooperates via direct association with a diverse collection of DNA-binding proteins, including members of the basic leucine zipper domain (bZIP) family. However, the molecular basis for this interaction has long been elusive. Using a combination of approaches, we have mapped a single residue on the surface of the ETS domain critical for protein tethering by the C/EBPbeta carboxyl-terminal bZIP domain. This residue is also important for nuclear localization and DNA binding. In addition, dependence upon the leucine zipper suggests a novel mode for both protein-DNA interaction and functional cooperativity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M509143200 | DOI Listing |
J Am Soc Nephrol
January 2025
Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Background: Notch signaling, a conserved mechanism of cell-to-cell communication, plays a crucial role in regulating cellular processes such as proliferation and differentiation in a context-dependent manner. However, the specific contribution of Notch signaling to the progression of polycystic kidney disease (PKD) remains unclear.
Methods: We investigated the changes in Notch signaling activity (Notch1-4) in the kidneys of autosomal dominant PKD (ADPKD) patients and two ADPKD mouse models (early and late onset).
Biol Rev Camb Philos Soc
December 2024
Departamento de Ciencias de la Vida, Universidad de Alcalá, Facultad de Ciencias, Área de Ecología, Ctra. Madrid-Barcelona, km.33, 600, 28805, Alcalá de Henares, Madrid, Spain.
Climate change is one of the main challenges that human societies are currently facing. Given that forests represent major natural carbon sinks in terrestrial ecosystems, administrations worldwide are launching broad-scale programs to promote forests, including stands of non-native trees. Yet, non-native trees may have profound impacts on the functions and services of forest ecosystems, including the carbon cycle, as they may differ widely from native trees in structural and functional characteristics.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid, Spain.
A detailed analysis of the low collision energy (0.03-10 meV) integral reaction cross-section has been carried out for the F + HD ( = 0, 1; = 1)→ HF(DF) + D(H) reaction using accurate, fully converged time-independent hyperspherical quantum dynamics. Particular attention has been paid to the shape (orbiting) resonances and their assignment to the orbital () and total () angular momenta as well as to the product's state resolved cross-sections at the energies of the resonances.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain.
Background/objectives: Understanding the genetic architecture of autochthonous European cattle breeds is important for developing effective conservation strategies and sustainable breeding programs. Spanish beef cattle, which trace their origins to ancient migrations from the Near East with later admixture from African populations, exhibit a rich genetic diversity shaped by environmental adaptation and selective breeding. Runs of Homozygosity (ROH) are extended stretches of identical genetic material inherited from both parents.
View Article and Find Full Text PDFDevelopment
December 2024
Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
The conserved Runt-related (RUNX) transcription factor family are master regulators of developmental and regenerative processes. Runx1 and Runx2 are expressed in satellite cells (SCs) and in skeletal myotubes. Here, we examined the role of Runx1 in mouse satellite cells to determine the role of Runx1 during muscle differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!