A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tyrosine phosphorylation of K(ir)3.1 in spinal cord is induced by acute inflammation, chronic neuropathic pain, and behavioral stress. | LitMetric

Tyrosine phosphorylation is an important means of regulating ion channel function. Our previous gene expression studies using the Xenopus laevis oocyte system suggested that tyrosine phosphorylation of G-protein-gated inwardly rectifying potassium channels (K(ir)3 or GIRK) suppressed basal channel conductance and accelerated channel deactivation. To assess whether similar mechanisms regulate K(ir)3 function in mammalian cells, we developed and characterized a phosphoselective antibody recognizing K(ir)3.1 phosphorylated at tyrosine 12 in the N-terminal domain and then probed for evidence of K(ir)3.1 phosphorylation in cultured mammalian cells and spinal cord. The antibody was found to discriminate between the phospho-Tyr(12) of K(ir)3.1 and the native state in transfected cell lines and in primary cultures of mouse atria. Following either mouse hindpaw formalin injection or sciatic nerve ligation, pY12-K(ir)3.1 immunoreactivity was enhanced unilaterally in the superficial layers of the spinal cord dorsal horn, regions previously described as expressing K(ir)3.1 channels. Mice lacking K 3.1 following targeted gene disruption did not show specific pY12-K(ir)3.1 immunoreactivity after sciatic nerve ligation. Further, mice exposed to repeatedly forced swim stress showed bilateral enhancement in pY12-K(ir)3.1 in the dorsal horn. This study provides evidence that K(ir)3 tyrosine phosphorylation occurred during acute and chronic inflammatory pain and under behavioral stress. The reduction in K(ir)3 channel activity is predicted to enhance neuronal excitability under physiologically relevant conditions and may mediate a component of the adaptive physiological response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2392895PMC
http://dx.doi.org/10.1074/jbc.M507069200DOI Listing

Publication Analysis

Top Keywords

tyrosine phosphorylation
16
spinal cord
12
pain behavioral
8
behavioral stress
8
mammalian cells
8
sciatic nerve
8
nerve ligation
8
py12-kir31 immunoreactivity
8
dorsal horn
8
tyrosine
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!