Ultrasonic-hydrothermal and hydrothermal treatment was used for synthesis of nanocrystalline zirconia, titania, nickel and nickel-zinc ferrites powders from precipitated amorphous zirconyl, titanyl, binary nickel-iron and ternary nickel-zinc-iron hydroxides, respectively. Resulted nanopowders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption (BET), and magnetic susceptibility measurements. It was established that ultrasonically assisted hydrothermal treatment of amorphous zirconyl and titanyl gels results in significant rise of the rate of ZrO2 and TiO2 crystallization and promotes formation of thermodynamically stable monoclinic zirconia, but does not affect the microstructure and mean particles size of resulting nanopowders. Ultrasonic-hydrothermal processing of co-precipitated amorphous nickel, zinc and iron hydroxides favours formation of nanocrystalline ferrite powders with narrower particle size distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2004.12.002DOI Listing

Publication Analysis

Top Keywords

ultrasonically assisted
8
assisted hydrothermal
8
synthesis nanocrystalline
8
zro2 tio2
8
hydrothermal treatment
8
amorphous zirconyl
8
zirconyl titanyl
8
hydrothermal synthesis
4
nanocrystalline zro2
4
tio2 nife2o4
4

Similar Publications

Emerging Wearable Acoustic Sensing Technologies.

Adv Sci (Weinh)

January 2025

Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.

Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy.

View Article and Find Full Text PDF

Robot Assisted Cholecystectomy Using the BORNS Simphoni System.

JSLS

January 2025

Attending Consultant Department of Minimal Access, Bariatric and Robotic Surgery, MAX Superspeciality Hospital Vaishali and Patparganj, Delhi National Capital Region, India. (Dr. Ahmed).

Background And Objective: Robotic cholecystectomy has technical advantages of 3D visualization, enhanced instrument maneuverability, and increased precision. Less chance of conversion to open and biliary spillage. This study explores the utilization of the BORNS Simphoni Robotic System for robotic cholecystectomy.

View Article and Find Full Text PDF

In this study, we optimal the ultrasound-assisted ionic liquid extraction (UAILE) process of polysaccharides from Crataegus songarica K. Koch fruits. The optimal conditions determined were: ultrasonic power of 400 W, temperature of 79 ℃, extraction time of 78 min, Ethylammonium dodecyl sulfate (EADS) concentration of 1.

View Article and Find Full Text PDF

Hypoxia is a major obstacle in the treatment of solid tumors because it causes immune escape and therapeutic resistance. Drug penetration into the hypoxic regions of tumor microenvironment (TME) is extremely limited. This study proposes using the unidirectional fluid flow property of low-intensity pulsed ultrasound (LIPUS) to overcome drug penetration limitations in the TME.

View Article and Find Full Text PDF

Dual-frequency ultrasonic-assisted enzymolysis for synthesis of microstructure regulated biomass-derived porous carbon for high-performance supercapacitors.

Ultrason Sonochem

December 2024

Shandong Engineering Research Center for High-efficiency Energy Storage and Hydrogen Energy Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.

Biomass-derived porous carbon (PC) has emerged as a promising candidate for electrode materials in energy storage applications, effective pretreatment of the precursor is a key strategy for enhancing the electrochemical performance of PC. However, challenges remain in achieving this goal through environmentally friendly, simple, and efficient methods. In this paper, a dual-frequency ultrasonic-assisted enzymolysis strategy combined with carbonization-activation method was proposed to prepare high-performance garlic peel-derived PC (DUGPC) for supercapacitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!