Previous ultrasound elasticity imaging experiments supported a generally accepted concept that the hardness of deep venous thrombi increases with thrombus aging. Results also showed that this noninvasive imaging technique can accurately predict thrombus age through strain estimates, in a well-controlled animal study. In the present study, as an alternative means to characterize elastic properties of thrombi, we used a direct mechanical measurement system to estimate Young's modulus of ex vivo thrombi. Unlike conventional indentation tests, the device uses a specific compression geometry for cylindrical tissue specimens. We also proposed an approximation scheme to retrieve Young's modulus from force-displacement measurements made using the device. Finite element simulations and calibrations on tissue-mimicking phantoms validated the system. Then, using two groups of rats with surgically-induced thrombi, we further investigated the correlation between Young's modulus measured ex vivo and elasticity images reconstructed in vivo. This comparison was accomplished by converting the intrathrombus strains measured in the in vivo studies into Young's modulus estimates using a model-based approach. Good agreement between time-dependent Young's modulus estimates observed in vivo and direct measurements of Young's modulus using the mechanical device helps to confirm the ability of elasticity imaging to age deep venous thrombi for efficient treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1343482PMC
http://dx.doi.org/10.1016/j.ultrasmedbio.2005.06.005DOI Listing

Publication Analysis

Top Keywords

young's modulus
24
elasticity imaging
12
ultrasound elasticity
8
direct mechanical
8
mechanical measurement
8
deep venous
8
venous thrombi
8
measured vivo
8
modulus estimates
8
young's
6

Similar Publications

Study on Starch-Based Thickeners in Chyme for Dysphagia Use.

Foods

December 2024

College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.

A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.

View Article and Find Full Text PDF

Asphalt modified with treated waste tires has good environmental protection and application value. However, the nano-modification mechanism of crumb rubber (CR) with asphalt is still unclear. This research investigates the mechanism, aging, and interfacial interaction with the aggregate of CR modification asphalt (CRMA).

View Article and Find Full Text PDF

Macro-Micro Properties of Remodeled Waste Slurry Under Freeze-Thaw Cycles.

Materials (Basel)

January 2025

School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, Tianjin 300401, China.

Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze-thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze-thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze-thaw cycles.

View Article and Find Full Text PDF

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

Pultruded carbon fiber-reinforced composites are attractive to the wind energy industry due to the rapid production of highly aligned unidirectional composites with enhanced fiber volume fractions and increased specific strength and stiffness. However, high volume carbon fiber manufacturing remains cost-prohibitive. This study investigates the feasibility of a pultruded low-cost textile carbon fiber-reinforced epoxy composite as a promising material in spar cap production was undertaken based on mechanical response to four-point flexure loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!