We have investigated the effects of C-H stretching excitation on the H+CH4-->CH3+H2 reaction dynamics using the photo-LOC technique. The CH3 product vibrational state and angular distribution are measured for the reaction of fast H atoms with methane excited in either the antisymmetric stretching fundamental (nu3=1) or first overtone (nu3=2) with a center-of-mass collision energy of Ecoll ranging from 1.52 to 2.20 eV. We find that vibrational excitation of the nu3=1 mode enhances the overall reaction cross section by a factor of 3.0+/-1.5 for Ecoll=1.52 eV, and this enhancement factor is approximately constant over the 1.52-2.20-eV collision energy range. A local-mode description of the CH4 stretching vibration, in which the C-H oscillators are uncoupled, is used to describe the observed state distributions. In this model, the interaction of the incident H atom with either a stretched or an unstretched C-H oscillator determines the vibrational state of the CH3 product. We also compare these results to the similar quantities obtained previously for the Cl+CH4-->CH3+HCl reaction at Ecoll=0.16 eV [Z. H. Kim, H. A. Bechtel, and R. N. Zare, J. Chem. Phys. 117, 3232 (2002); H. A. Bechtel, J. P. Camden, D. J. A. Brown, and R. N. Zare, ibid. 120, 5096 (2004)] in an attempt to elucidate the differences in reactivity for the same initially prepared vibration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2034507 | DOI Listing |
Transl Lung Cancer Res
December 2024
Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
Background: Spread through air spaces (STAS) in lung adenocarcinoma (LUAD) is a distinct pattern of intrapulmonary metastasis where tumor cells disseminate within the pulmonary parenchyma beyond the primary tumor margins. This phenomenon was officially included in the World Health Organization (WHO)'s classification of lung tumors in 2015. STAS is characterized by the spread of tumor cells in three forms: single cells, micropapillary clusters, and solid nests.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
Univ Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Fondation FondaMental, Créteil, France. Electronic address:
Despite tremendous advancements in neuroscience, there has been limited impact on patient care. Current psychiatric treatments are largely non-specific, and drug development is hindered by outdated, overinclusive diagnostic categories and a "one-size-fits-all" approach. Additionally, mechanisms underlying psychiatric illnesses and their treatments with conventional medications remain poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt.
This paper addresses the enhancement of formic acid electrooxidation (FAO) at Pt and Pt-NiOx nanoparticles based-catalysts assisted with urea derivatives as blending fuels. Blending formic acid with various ratios of urea derivatives showed noticeable enhancements of FAO as demonstrated by a favorable negative shift of its onset potential (E) and increase of its peak current density concurrently with suppression of the amount of CO poisoning reaction intermediate. Among all the used derivatives, phenyl urea (PU) showed superior enhancing effect towards the direct FAO with a minimal CO formation together with a favorable negative shift of E by 150 mV.
View Article and Find Full Text PDFACS Catal
October 2024
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
A class of generated Lewis acid (LA) activated acridine complexes is reported, which act as potent photochemical catalysts for the oxidation of a variety of protected secondary amines. Acridine/LA complexes exhibit tunable excited state reduction potentials ranging from +2.07 to 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!