Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip-scale detection strategy for immunosorbent assays.

Anal Chem

Department of Chemistry, Ames Laboratory-USDOE, and Institute for Combinatorial Discovery, Iowa State University, Ames, Iowa 50011, USA.

Published: October 2005

Thin structures of alternating magnetic and nonmagnetic layers with a total thickness of a few hundred nanometers exhibit a phenomenon known as giant magnetoresistance. The resistance of microfabricated giant magnetoresistors (GMRs) is dependent on the strength of an external magnetic field. This paper examines magnetic labeling methodologies and surface derivatization approaches based on protein-protein binding that are aimed at forming a general set of protocols to move GMR concepts into the bioanalytical arena. As such, GMRs have been used to observe and quantify the immunological interaction between surface-bound mouse IgG and alpha-mouse IgG coated on superparamagnetic particles. Results show the response of a GMR network connected together as a set of two sense GMRs and two reference GMRs in a Wheatstone bridge as a means to compensate for temperature effects. The response can be readily correlated to the amount of the magnetically labeled alpha-mouse IgG that is captured by an immobilized layer of mouse IgG, the presence of which is confirmed with X-ray photoelectron spectroscopy and atomic force microscopy. These results, along with a detailed description of the experimental testing platform, are described in terms of sensitivity, detection limits, and potential for multiplexing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0509049DOI Listing

Publication Analysis

Top Keywords

mouse igg
8
alpha-mouse igg
8
giant magnetoresistive
4
magnetoresistive sensors
4
sensors superparamagnetic
4
superparamagnetic nanoparticles
4
nanoparticles chip-scale
4
chip-scale detection
4
detection strategy
4
strategy immunosorbent
4

Similar Publications

Natural Killer Cell Education in Women With Recurrent Pregnancy Loss.

Am J Reprod Immunol

February 2025

GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Problem: Natural killer (NK) cells undergo education for full functionality via interactions between killer immunoglobulin-like receptors (KIRs) or NKG2A and human leukocyte antigen (HLA) ligands. Presumably, education is important during early pregnancy as insufficient education has been associated with impaired vascular remodeling and restricted fetal growth in mice. NK cell education is influenced by receptor co-expression patterns, human cytomegalovirus (CMV), the HLA-E107 dimorphism, and HLA-B leader peptide variants.

View Article and Find Full Text PDF

Background: The freshwater snails Biomphalaria alexandrina and Bulinus trancatus are key contributors to the transmission of S. mansoni and S.haematobium, respectively, for being their intermediate hosts.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and children. mRNA vaccines based on the lipopolyplex (LPP) platform have been previously reported, but they remain unapplied in RSV vaccine development. In this study, we developed a novel LPP-delivered mRNA vaccine that expresses the respiratory syncytial virus prefusion protein (RSV pre-F) to evaluate its immunogenicity and protective effect in a mouse model.

View Article and Find Full Text PDF

Background/objectives: COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide.

View Article and Find Full Text PDF

Cell Wall Protein 2 as a Vaccine Candidate Protects Mice Against Infection.

Vaccines (Basel)

December 2024

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA.

Background/objectives: is a Gram-positive, spore-forming enteric pathogen that causes intestinal disorders, including inflammation and diarrhea, primarily through toxin production. Standard treatment options for infection (CDI) involve a limited selection of antibiotics that are not fully effective, leading to high recurrence rates. Vaccination presents a promising strategy for preventing both CDI and its recurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!