A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers. | LitMetric

We present a microfabricated hybrid biopolymer microcantilever, in which the contractile force of self-organized cardiomyocytes can be measured and studied, as a prototype for the development of cell-driven actuators. The microcantilever is made of a flexible, transparent, biocompatible poly(dimethylsiloxane) substrate, using a simple microfabrication technique. Seeding and culturing cardiomyocytes on the specific cantilever allows us to perform highly sensitive, quantitative, and noninvasive measurement of the contractile force of the self-organized cells in real time. The motions of the microcantilever showed good agreement with an analytical solution based on Stoney's equation and finite element modeling (FEM) of the hybrid system. Immunostaining of the cells on the hybrid system showed continuous high-order coalignment of actin filaments and parallel sarcomeric organization in the direction of the longitudinal axis of the microcantilever without structural constraints, such as microgrooves or lines, and proved our FEM and the synchronous contraction of cardiomyocytes. The presented device should facilitate measurement of the contractile force of self-organized cardiomyocytes on a specific area, which may help the understanding of heart failure and the design of optimal hybrid biopolymer actuators, as well as assist development of a microscale cell-driven motor system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0507800DOI Listing

Publication Analysis

Top Keywords

measurement contractile
12
self-organized cardiomyocytes
12
hybrid biopolymer
12
contractile force
12
force self-organized
12
cardiomyocytes specific
8
hybrid system
8
cardiomyocytes
5
hybrid
5
real-time measurement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!