An artificial neural network model is developed to predict percent human intestinal absorption (%FA) of compounds from their molecular structural parameters. These parameters are the polar molecular surface area (PSA), the fraction of polar molecular surface area (FPSA, polar molecular surface area/ molecular surface area), the sum of the net atomic charges of oxygen atoms (Q(O)), the sum of the net atomic charges of nitrogen atoms with net negative atomic charges (Q(N)), the sum of the net atomic charges of hydrogen atoms attached to oxygen or nitrogen atoms (Q(H)), and the number of carboxyls (nCOOH). For a training set of 85 compounds anda test set of 10 compounds, root mean squared errors (RMSE) between experimental %FA valuesand calculated/predicted %FA values are 8.86% and 14.1%, respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

molecular surface
16
atomic charges
16
polar molecular
12
surface area
12
sum net
12
net atomic
12
human intestinal
8
intestinal absorption
8
artificial neural
8
neural network
8

Similar Publications

Femtosecond laser-ablative aqueous synthesis of multi-drug antiviral nanoparticles.

Nanomedicine (Lond)

March 2025

Department of Chemistry and The Institute for Laser, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY, USA.

Background: Nanomedicine offers a number of innovative strategies to address major public health burdens, including complex respiratory illnesses. In this work, we introduce a multi-drug nanoparticle fabricated using femtosecond laser ablation for the treatment of influenza, SARS-CoV-2, and their co-infections.

Methods: The SARS-CoV-2 antiviral, remdesivir; the influenza antiviral, baloxavir marboxil; and the anti-inflammatory, dexamethasone, were co-crystalized and then ablated in aqueous media using a femtosecond pulsed laser and subsequently surface modified with the cationic polymer, chitosan, or poly-d-lysine.

View Article and Find Full Text PDF

Lithium Bond-Mediated Molecular Cascade Hydrogel for Injury-Free and Repositionable Adhesive Bioelectronic Interfaces.

Adv Mater

March 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of energy and power engineering, Dalian University of Technology, Dalian, 116024, P. R. China.

Flexible bioelectronic interfaces with adhesive properties are essential for advancing modern medicine and human-machine interactions. However, achieving both stable adhesion and non-damaging detachment remains a significant challenge. In this study, a lithium bond-mediated molecular cascade hydrogel (LMCH) for bioelectronic interfaces is designed, which facilitates robust adhesion at the tissue level and permits atraumatic detachment for repositioning as required.

View Article and Find Full Text PDF

Patients with severe hemophilia A (HA) often develop undesired immune responses to therapeutic factor VIII (FVIII) that hamper replacement therapy with FVIII-derived products. The transplacental delivery of two Fc-fused FVIII domains in pregnant HA mice was shown to induce partial FVIII-specific immune tolerance in the offspring. Here, we evaluated whether the transplacental delivery of Fc-fused FVIII (rFVIIIFc) induces complete immune tolerance towards FVIII.

View Article and Find Full Text PDF

The increase in emerging and reemerging infectious diseases has underscored the need for the prompt monitoring of intact infectious viruses and the quick assessment of their infectivity. However, molecular techniques cannot distinguish between intact infectious and noninfectious viruses. Here, two distinct methodologies have been developed for the expeditious and dependable quantification of intact infectious H1N1 virus, and several experiments have been conducted to substantiate their efficacy.

View Article and Find Full Text PDF

Background: The specific and non-specific toxicities of cryoprotective agents (CPAs) for semen or spermatozoa cryopreservation/vitrification (SC/SV) remain challenges to the success of assisted reproductive technologies.

Objective: We searched for and integrated the physicochemical and toxicological characteristics of small-molecule CPAs as well as curated the information of all extenders reported for carnivores to provide a foundation for new research avenues and computational cryobiology.

Methods: The PubMed database was systematically searched for CPAs reported in SC/SV of carnivores from 1964 to 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!