The use of spatial methods to detect and characterize changes in land use has been attracting increasing attention from researchers. The objectives of this article were to formulate the dynamics of land use on the temporal and spatial dimensions from the perspectives of the Change-Pattern-Value (CPV) and driving mechanism, based on multitemporal remote sensing data and socioeconomic data. The Artificial Neural Networks were used to identify the factors driving changes in land use. The Pearl River Delta Region of southeast China, which was experiencing rapid economic growth and widespread land conversion, has been selected as the study region. The results show that from 1985 to 2000 in the study region (1) the most prominent characteristics of change in land use were the expansion of the urban land at the expense of farmland, forests, and grasslands, (2) the land-use pattern was being optimized during this period, (3) in an analysis of value, built-up land can yield a return of more than 30 times that of farmland, water area, and forests lands, and (4) rapid economic development, growth in population, and the development of an infrastructure were major driving factors behind ecological land loss and the nonecological land expansion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-004-0165-zDOI Listing

Publication Analysis

Top Keywords

land
10
dynamics land
8
artificial neural
8
neural networks
8
changes land
8
rapid economic
8
study region
8
land expansion
8
modeling change-pattern-value
4
change-pattern-value dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!