Epidermal growth factor receptor (EGFR) overactivity plays a significant role in colon cancer biology and has been associated with poor clinical prognosis. Early clinical trials reported efficacy of receptor-targeted compounds, including modulation of clinical irinotecan resistance. We investigated the effects of the EGFR tyrosine kinase inhibitor gefitinib on cellular determinants of irinotecan resistance in human colon cancer cells. At non-cytotoxic concentrations, gefitinib sensitized colon cancer cells to SN-38, the active metabolite of irinotecan. Gefitinib increased the SN-38-mediated induction of protein-linked DNA single-strand breaks in a dose-dependent manner, with no alteration of topoisomerase (Topo) I protein expression or enzymatic activity. Whereas Topo IIbeta protein expression was not affected by gefitinib, significant time- and concentration-dependent downregulation of Topo IIalpha protein and inhibition of its enzymatic function were observed, corresponding to a G1 phase cell cycle arrest. Gefitinib significantly inhibited EGFR-associated signaling molecules, including phospho-mitogen-activated protein kinase or protein kinase C, which may account for decreases in proliferation or topoisomerase activity, respectively. Although a dose-dependent decrease of the BCRP/MXR/ABCP half-transporter was observed under gefitinib, cellular pharmacokinetics revealed no significant differences in accumulation or retention of the active SN-38 lactone using reverse-phase HPLC analysis. This study delineates mechanisms that may contribute to the synergism observed between irinotecan and EGFR inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001813-200511000-00009DOI Listing

Publication Analysis

Top Keywords

colon cancer
16
cancer cells
12
epidermal growth
8
growth factor
8
factor receptor
8
tyrosine kinase
8
kinase inhibitor
8
inhibitor gefitinib
8
irinotecan resistance
8
gefitinib cellular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!