A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. | LitMetric

G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits.

Mol Biol Cell

Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Published: January 2006

The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells produced a significant reduction of the extracellular signal-regulated kinase (ERK) response to CCL2. This effect is independent of its role in receptor phosphorylation because the kinase-deficient mutant GRK2K220R was able to reduce this response, and ERK activation by CCR2BIX, a phosphorylation-defective receptor mutant, was also inhibited by GRK2. Constructs containing the Galpha(q)-binding RGS-like RH domain of GRK2 or its Gbetagamma-binding domain could not reproduce the inhibition, thus revealing that GRK2 acts downstream of G proteins. Interestingly, chemokine-driven mitogen-activated protein kinase kinase (MEK) stimulation is not affected in cells overexpressing GRK2 or GRK2K220R or in splenocytes from heterozygous GRK2 mice, where reduced kinase levels correlate with enhanced ERK activation by chemokines. We find GRK2 and MEK in the same multimolecular complex, thus suggesting a mechanism for GRK2 regulation of ERK activity that involves a direct or coordinate interaction with MEK. These results suggest an important role for GRK2 in the control of chemokine induction of ERK activation at the level of the MEK-ERK interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1345643PMC
http://dx.doi.org/10.1091/mbc.e05-05-0399DOI Listing

Publication Analysis

Top Keywords

erk activation
12
grk2
11
protein-coupled receptor
8
receptor kinase
8
role grk2
8
kinase
6
erk
5
kinase negatively
4
negatively regulates
4
regulates chemokine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!