Background: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by dysregulated tubular epithelial cell growth, resulting in the formation of multiple renal cysts and progressive renal failure. To date, there is no effective treatment for ADPKD. The mammalian target of rapamycin (mTOR) is an atypical protein kinase and a central controller of cell growth and proliferation. We examined the effect of the mTOR inhibitor sirolimus (rapamycin) on renal functional loss and cyst progression in the Han:SPRD rat model of ADPKD.
Methods: Five-week-old male heterozygous cystic (Cy/+) and wild-type normal (+/+) rats were administered sirolimus (2 mg/kg/day) orally through the drinking water for 3 months. The renal function was monitored throughout the treatment phase, and rats were sacrificed thereafter. Kidneys were analysed histomorphometrically, and for the expression and phosphorylation of S6K, a well-characterized target of mTOR in the regulation of cell growth.
Results: The steady increase in BUN and creatinine in Cy/+ rats was reduced by 39 and 34%, respectively with sirolimus after 3 months treatment. Kidney weight and 2-kidney/total body weight (2K/TBW) ratios were reduced by 34 and 26% in sirolimus-treated Cy/+ rats. Cyst volume density was also reduced by 18%. Of importance, Cy/+ rats displayed enhanced levels of total and phosphorylated S6K. Sirolimus effectively reduced total and phosphorylated levels of S6K.
Conclusion: We conclude that oral sirolimus markedly delays the loss of renal function and retards cyst development in Han:SPRD rats with ADPKD. Our data also suggest that activation of the S6K signalling pathway plays an important role in the pathogenesis of PKD. Sirolimus could be a useful drug to retard progressive renal failure in patients with ADPKD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ndt/gfi181 | DOI Listing |
Cell Stem Cell
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:
Tissue-engineered vascular conduits (TEVCs) are a promising blood vessel replacement. In a recent publication in Cell Stem Cell, Park et al. developed TEVCs comprised of decellularized human umbilical arteries lined with shear-trained, human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) that resisted thrombosis and exhibited patency upon grafting into the rat inferior vena cava (IVC).
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Center of Precision Medicine, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College), Zheshan West Road, Wuhu, 241001, Anhui, China.
Background: There is currently no definitive treatment for osteoarthritis. We examined the therapeutic effects and underlying mechanisms of platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells (ADSCs), individually or in combination, in a rat model of anterior cruciate ligament-induced degenerative osteoarthritis (OA) of the knee. This study seeks to advance clinical approaches to OA treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Blood Ecology and Biointelligence, Jinan Key Laboratory of Medical Cell Bioengineering, Cardio- cerebrovascular Disease Hospital of Jinan, The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong Second Medical University, 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong, China.
Previous cesarean scar defect (PCSD), also acknowledged as the myometrium of uterus defects, which commonly results in myometrial discontinuity between the uterine and cervical cavity. Current literatures have indicated the efficacy of MSCs and MSC-derived exosomes (MSC-Exos) for diverse refractory disease administration, yet the feasibility of MSC-Exos for PCSD treatment is largely obscure. In this study, we took advantage of the in vivo myofibrotic model for mimicking the typical manifestation of PCSD and the assessment of fertility.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding.
View Article and Find Full Text PDFNat Commun
January 2025
General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy.
To fully harness mesenchymal-stromal-cells (MSCs)' benefits during Normothermic Machine Perfusion (NMP), we developed an advanced NMP platform coupled with a MSC-bioreactor and investigated its bio-molecular effects and clinical feasibility using rat and porcine models. The study involved three work packages: 1) Development (n = 5): MSC-bioreactors were subjected to 4 h-liverless perfusion; 2) Rat model (n = 10): livers were perfused for 4 h on the MSC-bioreactor-circuit or with the standard platform; 3) Porcine model (n = 6): livers were perfused using a clinical device integrated with a MSC-bioreactor or in its standard setup. MSCs showed intact stem-core properties after liverless-NMP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!