In vitro permeation of lidocaine (lidocaine base, LID) through excised rat skin was investigated using several LID-suspended oily formulations. The first skin permeation of LID from an LID-suspended oily solution such as liquid paraffin (LP), isopropyl myristate (IPM), polyoxyethylene (2) oleylether (BO-2), and diethyl sebacate (DES) was evaluated and compared with that from polyethylene glycol 400 (PEG400) solution, a hydrophilic base. The obtained permeation rate of LID, Japp, from PEG400, LP, IPM, BO-2, and DES was in the order of DES>BO-2=IPM>LP>PEG400, and increased with LID solubility in the oily solvents, although LID crystals were dispersed in all solvents. Subsequently, oily formulations that consisted of different ratios of the first oily solvent (IPM, BO-2, or DES) (each 0-20%), the second oily solvent (LP) and an oily mixture of microcrystalline wax/white petrolatum/paraffin (1/5/4) were evaluated. BO-2 groups at a concentration of 5% and 10% had the highest Japp among the oily formulations, although a higher BO-2 resulted in lower skin permeation. In addition, pretreatment with BO-2 increased the skin permeation of LID. These results suggest that the penetration enhancing effect by the system may be related to the skin penetration of BO-2 itself. Finally, mathematical analysis was done to evaluate the effect of BO-2, and it was shown that BO-2 improved the LID solubility in stratum corneum lipids to efficiently enhance the LID permeation through skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03639040500216147 | DOI Listing |
Molecules
January 2025
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
Cosmetically active compounds (CACs), both of lipophilic and hydrophilic origin, have difficulty reaching the deeper layers of the skin, and this shortcoming significantly reduces their efficacy. One such CAC that occurs naturally in the human body and displays many beneficial properties (via reducing fine lines and wrinkles, tightening skin, improving its elasticity, etc.) is the glycyl-L-histidyl-L-lysine tripeptide complex of copper (GHK-Cu).
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Consulting, Fort Collins, Colorado, USA.
Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity.
View Article and Find Full Text PDFSmall
January 2025
Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China.
Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India.
Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!