The low-temperature (-100 degrees C) dehydrohalogenation of bromocyclooctatetraene followed by immediate electron-transfer yields a stable solution of the [8]annulyne anion radical. If the unstable [8]annulyne is reacted with itself, cyclobutadiene, or benzyne, the respective bi-[8]annulenylene, [6]annuleno[8]annulene, or [6]-[8]annulenylene can be trapped as their anion radicals via one-electron transfer. These condensation products were all obtained from simple [2 + 2] cycloaddition reactions. B3LYP/6-31G geometry optimizations were carried out, and the calculated spin densities were compared to the EPR spectral results obtained for the anion radicals of [6]annuleno[8]annulene, [8]annulyne, bi[8]annulenylene, and [6]-[8]annulenylene, and excellent agreement has been realized. This simple "one-pot" approach should be applicable to a wide range of such systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja035062e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!