The natural abundance of 13C, 15N, 34S and 14C in archived (1923-2000) plant and soil samples from the Askov long-term experiments on animal manure and mineral fertilizer.

Rapid Commun Mass Spectrom

Department of Soil, Environmental and Ecological Sciences, IGER North Wyke Research Station, Okehampton EX20 2SB, UK.

Published: March 2006

The Askov field experiment (Denmark), established in 1894, provides a unique opportunity to examine long-term effects of animal manure and mineral fertilizer on soil organic matter quality and turnover. This sandy loam soil is classified as Alfisol (Typic Hapludalf). Soil C, N, S, 13C, 15N, 34S and 14C contents were measured in a selection of archived soil samples (1923, 1938, 1945, 1953, 1964, 1976, 1985, 1996 and 2000) from unfertilized (O), animal manure (1 AM) and mineral fertilizer (1 NPK) treatments. These treatments are imbedded in a four-course crop rotation of winter cereals, root crops, spring cereals and a clover/grass mixture. The contents of C, N, S, 13C, 15N and 34S in selected crop samples (1953-1996) and in contemporary samples of animal feed and manure were also determined. Temporal soil nutrient and isotope trends between fertilizer treatments were significantly different, except for S content in 1 AM and 1 NPK. The total soil C and S was higher in 1 AM and 1 NPK than in the O treatment. The total soil N content (1 AM>1 NPK>O) and the delta15N content (1 AM>1 NPK and O) were also different. Analyses of plant, animal feed and manures confirmed that differences in soil 15N values were related to delta15N values of added source inputs. Soil and crop delta13C values were similar, but manures had slightly lower values. The variation of soil delta34S (and total S) from 1923 to 1996 was larger in the O than 1 AM and 1 NPK plots reflecting changes in atmospheric S inputs. The total contents of soil C, N and S were significantly correlated, but their isotopic signatures were not, suggesting that the C, N, S turnovers in soil are subject to different controls. The 14C content was generally higher in the 1 AM than 1 NPK and O, with bomb-14C incorporation modelling indicating that mean residence time (MRT) was ca. 170 years in the 1 AM, but closer to 250-290 years in the 1 NPK and O treatments. The measured trends in soil C and 14C during 1923-1996 were successfully modelled using the RothC model. The OM accumulation in the Askov soils was generally dominated by microbial decomposition products rather than by recalcitrant components of the various inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.2156DOI Listing

Publication Analysis

Top Keywords

soil
14
13c 15n
12
15n 34s
12
animal manure
12
manure mineral
12
mineral fertilizer
12
34s 14c
8
soil samples
8
npk treatments
8
animal feed
8

Similar Publications

Defense guard: strategies of plants in the fight against Cadmium stress.

Adv Biotechnol (Singap)

December 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.

Soil Cadmium (Cd) contamination is a worldwide problem with negative impacts on human health. Cultivating the Cd-Pollution Safety Cultivar (Cd-PSC) with lower Cd accumulation in edible parts of plants is an environmentally friendly approach to ensure food security with wide application prospects. Specialized mechanisms have been addressed for Cd accumulation in crops.

View Article and Find Full Text PDF

The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.

View Article and Find Full Text PDF

Comparative study of Mg/Al-LDH and Mg/Fe-LDH on adsorption and loss control of 2,4-dichlorophenoxyacetic acid.

Adv Biotechnol (Singap)

January 2025

School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.

Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.

View Article and Find Full Text PDF

Hydraulic redistribution (HR) is a critical ecological process whereby plant roots transfer water from wetter to drier soil layers, significantly impacting soil moisture dynamics and plant water and nutrient uptake. Yet a comprehensive understanding of the mechanism triggering HR and its influencing factors remains elusive. Here, we conducted a systematic meta-analysis to discuss the influence of soil conditions and plant species characteristics on HR occurrence.

View Article and Find Full Text PDF

Winter forage crops influence soil properties through establishing different arbuscular mycorrhizal fungi communities in paddy field.

Adv Biotechnol (Singap)

September 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.

Winter planting is promising for improving the utilization rate of fallow paddy fields in southern China by establishing arbuscular mycorrhizal fungi (AMF) communities. However, the effects of different winter forage crops on AMF community construction remain unknown. The AMF community establishment of different winter planting forage crops were conducted in oat, rye, Chinese milk vetch, and ryegrass, with winter fallow as a control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!