Purpose: The objective of this study was to evaluate the ability of FDG-PET to predict the response of primary tumour and nodal disease to preoperative induction chemoradiotherapy in patients with non-small cell lung cancer (NSCLC).

Methods: FDG-PET studies were performed before and after completion of chemoradiotherapy prior to surgery in 26 patients with NSCLC. FDG-PET imaging was performed at 1 h (early) and 2 h (delayed) after injection. Semi-quantitative analysis was performed using the standardised uptake value (SUV) at the primary tumour. Percent change was calculated according to the following equation: [see text]. Based on histopathological analysis of the specimens obtained at surgery, patients were classified as pathological responders or pathological non-responders. The clinical nodal stage on the post-chemoradiotherapy PET scan was visually determined and compared with the final pathological stage.

Results: Eighteen patients were found to be pathological responders and eight to be pathological non-responders. SUV(after) values from both early and delayed images in pathological responders were significantly lower than those in pathological non-responders. The percent change values from early and delayed images in the pathological responders were significantly higher than those in the pathological non-responders. The post-chemoradiotherapy PET scan accurately predicted nodal stage in 22 of 26 patients.

Conclusion: FDG-PET may have the potential to predict response to induction chemoradiotherapy in patients with NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-005-1878-9DOI Listing

Publication Analysis

Top Keywords

pathological responders
16
pathological non-responders
16
induction chemoradiotherapy
12
early delayed
12
pathological
9
response induction
8
non-small cell
8
cell lung
8
lung cancer
8
predict response
8

Similar Publications

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

The aim was to explore the application value of dynamic electroencephalography (EEG) combined with brainstem auditory evoked potential (BAEP) in evaluating the degree of vascular stenosis and prognosis in patients with ischemic stroke (IS). This was a retrospective study using clinical data of patients with IS admitted to the First Affiliated Hospital of Chongqing Medical and Pharmaceutical College from March 2020 to March 2022. The degree of vascular stenosis and prognosis of patients were analyzed.

View Article and Find Full Text PDF

Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors.

View Article and Find Full Text PDF

Purpose: To create a computer-aided prediction (CAP) system to predict Wilms tumor (WT) responsiveness to preoperative chemotherapy (PC) using pre-therapy contrast-enhanced computed tomography (CECT).

Materials And Methods: A single-center database was reviewed for children <18 years diagnosed with WT and received PC between 2001 and 2021. Patients were excluded if pre- and post-PC CECT were not retrievable.

View Article and Find Full Text PDF

Introduction/objectives: Genetic variations could explain individual responses to drugs. This case-control study aimed to investigate the association between the multidrug resistance 1 (MDR1) gene exonic single nucleotide variants (SNVs), rs1128503/C1236T and rs1045642/C3435T, and the response to intravenous methylprednisolone in Egyptian patients with active systemic lupus erythematosus (SLE).

Method: Real-time polymerase chain reaction was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!