Aldosterone production in zona glomerulosa (ZG) cells of adrenal glands is regulated by various extracellular stimuli (K(+), ANG II, ACTH) that all converge on two major intracellular signaling pathways: an increase in cAMP production and calcium (Ca(2+)) mobilization. However, molecular events downstream of the increase in intracellular cAMP and Ca(2+) content are controversial and far from being completely resolved. Here, we found that Ca(2+)/calmodulin-dependent protein kinases (CaMKs) play a predominant role in the regulation of aldosterone production stimulated by ANG II, ACTH, and cAMP. The specific CaMK inhibitor KN93 strongly reduced ANG II-, ACTH-, and cAMP-stimulated aldosterone production. In in vitro kinase assays and intact cells, we could show that cAMP-induced activation of CaMK, using the adenylate cyclase activator forskolin or the cAMP-analog Sp-5,6-DCI-cBIMPS (cBIMPS), was not mediated by PKA. Activation of the recently identified cAMP target protein Epac (exchange protein directly activated by cAMP) by 8-pCPT-2'-O-Me-cAMP had no effect on CaMK activity and aldosterone production. Furthermore, we provide evidence that cAMP effects in ZG cells do not involve Ca(2+) or MAPK signaling. Our results suggest that ZG cells, in addition to PKA and Epac/Rap proteins, contain other as yet unidentified cAMP mediator(s) involved in regulating CaMK activity and aldosterone secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00128.2005 | DOI Listing |
Int J Mol Sci
December 2024
Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510800, China.
Irbesartan improves ventricular remodeling (VR) following myocardial infarction (MI). This study investigates whether irbesartan attenuates VR by reducing aldosterone production in the heart and its underlying mechanisms. MI was induced in male Sprague-Dawley rats through coronary artery ligation.
View Article and Find Full Text PDFJ Saudi Heart Assoc
December 2024
College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
Objectives: Zilebesiran is an investigational RNA interference therapeutic designed to lower blood pressure by targeting the hepatic production of angiotensinogen, the most upstream precursor of the renin-angiotensin-aldosterone system. This approach aims to offer long-lasting blood pressure control with potentially fewer doses compared to traditional antihypertensive medications. The objective of this systematic review and meta-analysis was to assess the antihypertensive efficacy of zilebesiran in patients with hypertension.
View Article and Find Full Text PDFPharmacoepidemiol Drug Saf
January 2025
Pharmacy and Pharmacology Center, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
Purpose: Studies on antihypertensive treatment are important, as hypertension remains the major risk factor for cardiovascular morbidity and premature death. However, antihypertensive medicines are also used for other conditions, and the use of these medicines as a proxy for a diagnosis of hypertension might lead to misclassification in pharmacoepidemiological studies. This study aimed to investigate to what extent people dispensed antihypertensive medicines have been diagnosed with hypertension.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia.
Primary aldosteronism is characterised by the excessive production of aldosterone, which is a key regulator of salt metabolism, and is the most common cause of secondary hypertension. Studies have investigated the association between primary aldosteronism and genetic alterations, with pathogenic mutations being identified. This includes a glycine-to-arginine substitution at position 151 (G151R) of the G protein-activated inward rectifier potassium (K) channel 4 (GIRK4), which is encoded by the gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!