Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is a minor HDL-associated protein. Because many minor HDL-associated proteins exchange between different lipoprotein classes during the postprandial state and are also involved in triglyceride (TG) metabolism, we hypothesized that GPI-PLD may play a role in the metabolism of TG-rich lipoproteins. To test this hypothesis, we examined the distribution of GPI-PLD among lipoprotein classes during a fat tolerance test in C57BL/6 and LDL receptor-deficient (LDLR(-/-)) mice fed either a chow or high-fructose diet. In the fasting state in wild-type mice fed a chow diet, GPI-PLD was only present in HDL, whereas in LDLR(-/-) mice GPI-PLD was present in HDL and intermediate-density lipoproteins (IDL)/LDL. During the fat tolerance test, there was no change in total serum GPI-PLD levels in either model; however, a significant amount of GPI-PLD appeared in both VLDL (0.5-1% of total GPI-PLD) and IDL/LDL (5-10% of total GPI-PLD) in both models. The high-fructose diet increased both fasting and postprandial TG and serum GPI-PLD levels in both strains as well as the amount of GPI-PLD in VLDL. To determine whether GPI-PLD plays a direct role in TG metabolism, we increased liver GPI-PLD expression in C57BL/6 mice by adenovirus-mediated gene transfer, which resulted in a sevenfold increase in serum GPI-PLD levels. This change was associated with an increase in fasting (30%) and postprandial TG (50%) and a twofold reduction in TG-rich lipoprotein catabolism compared with saline or control adenovirus-treated mice. These studies demonstrate that GPI-PLD affects serum TG levels by altering catabolism of TG-rich lipoproteins.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00593.2004DOI Listing

Publication Analysis

Top Keywords

gpi-pld
15
serum gpi-pld
12
gpi-pld levels
12
glycosylphosphatidylinositol-specific phospholipase
8
minor hdl-associated
8
lipoprotein classes
8
role metabolism
8
tg-rich lipoproteins
8
fat tolerance
8
tolerance test
8

Similar Publications

The role of GPLD1 in chronic diseases.

J Cell Physiol

July 2023

Hubei Key Laboratory of Sport Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China.

Glycosylphosphatidylinositol-specific phospholipase D (GPLD1) is a specific enzyme for glycosylphosphatidylinositol (GPI) anchors, thereby exerting its biological functions by cleaving membrane-associated GPI molecules. GPLD1 is abundant in serum, with a concentration of approximately 5-10 µg/mL. Previous studies have demonstrated that GPLD1 plays a crucial role in the pathogenesis of numerous chronic diseases including disorders of lipid and glucose metabolism, cancer, and neurological disorders.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol-specific phospholipase D1 (GPLD1) hydrolyzes inositol phosphate linkages in proteins anchored to the cell membrane. Mice overexpressing GPLD1 show enhanced neurogenesis and cognition. Snell dwarf (DW) and growth hormone receptor knockout (GKO) mice show delays in age-dependent cognitive decline.

View Article and Find Full Text PDF

An Explanation for the Adiponectin Paradox.

Pharmaceuticals (Basel)

December 2021

Gänsbühlgartenweg 7, 4132 Muttenz, Switzerland.

The adipokine adiponectin improves insulin sensitivity. Functional signal transduction of adiponectin requires at least one of the receptors AdipoR1 or AdipoR2, but additionally the glycosyl phosphatidylinositol-anchored molecule, T-cadherin. Overnutrition causes a reduction in adiponectin synthesis and an increase in the circulating levels of the enzyme glycosyl phosphatidylinositol-phospholipase D (GPI-PLD).

View Article and Find Full Text PDF

Serum glypican4 and glycosylphosphatidylinositol-specific phospholipase D levels are associated with adipose tissue insulin resistance in obese subjects with different glucose metabolism status.

J Endocrinol Invest

April 2021

Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.

Objectives: Glypican4 (GPC4) is a novel adipokine associated with obesity and insulin resistance. GPC4 was cleaved by the glycosylphosphatidylinositol-specific phospholipase D (GPLD1) in an anchored site of the glycosylphosphatidylinositol, and then was released into the extracellular environment. Herein, we investigated the changes of serum GPC4 and GPLD1 levels in obese subjects with different glucose metabolism status and their relationship with adipose tissue insulin resistance index (Adipo-IR) in Chinese north populations.

View Article and Find Full Text PDF

Reversing brain aging may be possible through systemic interventions such as exercise. We found that administration of circulating blood factors in plasma from exercised aged mice transferred the effects of exercise on adult neurogenesis and cognition to sedentary aged mice. Plasma concentrations of glycosylphosphatidylinositol (GPI)-specific phospholipase D1 (Gpld1), a GPI-degrading enzyme derived from liver, were found to increase after exercise and to correlate with improved cognitive function in aged mice, and concentrations of Gpld1 in blood were increased in active, healthy elderly humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!