Functional kainate receptors are expressed in the spinal cord substantia gelatinosa region, and their activation contributes to bi-directional regulation of excitatory synaptic transmission at primary afferent synapses with spinal cord substantia gelatinosa neurons. However, no study has reported a role(s) for kainate receptor subtypes in long-term synaptic plasticity phenomena in this region. Using gene-targeted mice lacking glutamate receptor 5 (GLU(K5)) or GLU(K6) subunit, we here show that GLU(K6) subunit, but not GLU(K5) subunit, is involved in the induction of long-term potentiation of excitatory postsynaptic potentials, evoked by two different protocols: (1) high-frequency primary afferent stimulation (100 Hz, 3 s) and (2) low-frequency spike-timing stimulation (1 Hz, 200 pulses). In addition, GLU(K6) subunit plays an important role in the expression of kainate-induced Ca2+ transients in the substantia gelatinosa. On the other hand, genetic deletion of GLU(K5) or GLU(K6) subunit does not prevent the induction of long-term depression. These results indicate that unique expression of kainate receptors subunits is important in regulating spinal synaptic plasticity and thereby processing of sensory information, including pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbrainres.2005.09.004DOI Listing

Publication Analysis

Top Keywords

substantia gelatinosa
16
gluk6 subunit
16
synaptic plasticity
12
long-term synaptic
8
kainate-induced ca2+
8
ca2+ transients
8
transients substantia
8
gelatinosa neurons
8
kainate receptors
8
spinal cord
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!