Mature porcine oocytes are arrested at metaphase II of meiosis. At fertilization, like all mammalian oocytes they exhibit a low frequency Ca(2+) oscillation lasting several hours. This oscillation is thought to be the signal that triggers resumption of meiosis and activates the developmental program of the oocyte. The signal transduction mechanism of the sperm-induced Ca(2+) signal is not known in detail, and attempts to generate the oscillation artificially have met with little success. Nevertheless, artificial activation of the oocyte is a crucial step during nuclear transfer. Methods are available to induce a transient elevation in the intracellular free Ca(2+) concentration to surpass the meiotic arrest and induce development of the constructed embryo. Further studies concentrating on the mechanism of Ca(2+) signaling during fertilization will help to improve the efficiency of the procedures used for parthenogenetic activation of the oocyte.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/15204559950019988 | DOI Listing |
Anim Reprod Sci
December 2024
China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China. Electronic address:
Assisted reproductive technology (ART) is widely used to address infertility and enhance reproductive outcomes in livestock. Among various ART techniques, in vitro maturation (IVM) is commonly used to obtain high-quality oocytes but is susceptible to oxidative stress. In traditional Chinese medicine, Rhizoma Atractylodis Macrocephalae (Bai Zhu) is used to enhance maternal and fetal health.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
Background: Although the Notch signaling pathway is known to play an important role in ovarian follicle development in mammals, whether it is involved in oocyte maturation remains unclear. Therefore, this study was performed to elucidate the existence and role of the Notch signaling pathway during oocyte maturation in a porcine model.
Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemical assays were used to determine the existence of Notch signaling pathway-related transcripts and proteins in porcine cumulus-oocyte complexes (COCs).
Front Vet Sci
December 2024
Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea.
Objective: Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms.
View Article and Find Full Text PDFTheriogenology
December 2024
Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain. Electronic address:
Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both.
View Article and Find Full Text PDFTheriogenology
December 2024
College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China. Electronic address:
Lipid metabolism plays an important role in the regulation of early embryonic development in mammals. However, the effect of lipid metabolism mediated by peroxisome proliferator-activated receptor γ (PPARγ) on the early embryonic development of sheep remains unclear. In this study, rosiglitazone (RSG), a PPARγ activator, was added to the in vitro embryo culture (IVC) medium to regulate the continuous expression of PPARγ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!