We explore two routes to wave function engineering in elongated colloidal CdSe/CdS quantum dots, providing deep insight into the intrinsic physics of these low-dimensional heterostructures. Varying the aspect ratio of the nanoparticle allows control over the electron-hole overlap (radiative rate), and external electric fields manipulate the interaction between the delocalized electron and the localized hole. In agreement with theory, this leads to an exceptional size dependent quantum confined Stark effect with field induced intensity modulations, opening applications as electrically switchable single photon sources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl051596xDOI Listing

Publication Analysis

Top Keywords

wave function
8
function engineering
8
engineering elongated
8
elongated semiconductor
4
semiconductor nanocrystals
4
nanocrystals heterogeneous
4
heterogeneous carrier
4
carrier confinement
4
confinement explore
4
explore routes
4

Similar Publications

Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

J Phys Chem A

January 2025

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Designing rare earth borates as UV nonlinear optical crystals exhibiting strong second-harmonic generation responses.

Chem Commun (Camb)

January 2025

Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

Two new rare earth borate NLO crystals, KNaSrYBO and RbBaLuBO, were successfully designed and synthesized, which feature NLO-active [BO] groups and [Y/LuO] polyhedra. They exhibit notably short UV absorption cutoff edges below 200 nm, wide band gaps exceeding 6.2 eV, and strong second-harmonic generation intensities that are comparable to KDP.

View Article and Find Full Text PDF

Selective sensing of NH and NO on WSe monolayers based on defect concentration regulation.

Phys Chem Chem Phys

January 2025

College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.

Defect engineering is an important method to control material properties. In this paper, large-scale sampling density functional theory (DFT) was used to investigate the adsorption and sensing behavior of NH and NO on a WSe monolayer, with a focus on the effect of selenium vacancy concentration. The results demonstrate that selectivity is inhibited on a perfect monolayer due to the similar adsorption energy of the two gases, NH and NO, while selectivity can be obtained for both of them under different selenium vacancy concentrations (NH about 2-5.

View Article and Find Full Text PDF

Purpose: Although insufficient sleep influences cognitive function and physical and mental health in adolescents, many still get less sleep than the recommended duration. Adolescent substance use, including alcohol and tobacco, influences sleep disturbance. However, sex differences in the relationship between substance use and sleep health have not been extensively studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!