The patterning of nanoparticles represents a significant obstacle in the assembly of nanoscale materials and devices. In this report, cysteine residues were genetically engineered onto the virion surface of tobacco mosaic virus (TMV), providing attachment sites for fluorescent markers. To pattern these viruses, labeled virions were partially disassembled to expose 5' end RNA sequences and hybridized to virus-specific probe DNA linked to electrodeposited chitosan. Electron microscopy and RNAase treatments confirmed the patterned assembly of the virus templates onto the chitosan surface. These findings demonstrate that TMV nanotemplates can be dimensionally assembled via nucleic acid hybridization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl051254rDOI Listing

Publication Analysis

Top Keywords

patterned assembly
8
nucleic acid
8
acid hybridization
8
assembly genetically
4
genetically modified
4
modified viral
4
viral nanotemplates
4
nanotemplates nucleic
4
hybridization patterning
4
patterning nanoparticles
4

Similar Publications

Tailored Nucleation-Growth Strategy for Precise Self-assembly of Block Copolymers.

Chemistry

January 2025

Beijing Institute of Technology, Polymer Materials, 5 Zhongguancun Nandajie, 100081, Beijing, CHINA.

The self-assembly of block copolymers (BCPs) to form nanostructures of various morphologies and controllable dimensions has been a very promising research area in nanotechnology in recent decades. This review mainly summarizes the recent advances in precise and controllable self-assembly of BCPs through a tailored nucleation-growth strategy to modulate the self-assembly behavior of the BCPs. These efforts have led to a better understanding of the self-assembly mechanisms and opened new possibilities for creating novel materials with designable properties.

View Article and Find Full Text PDF

Mathematical modeling of somatic evolution, a process impacting both host cells and microbial communities in the human body, can capture important dynamics driving carcinogenesis. Here we considered models for esophageal adenocarcinoma (EAC), a cancer that has dramatically increased in incidence over the past few decades in Western populations, with high case fatality rates due to late-stage diagnoses. Despite advancements in genomic analyses of the precursor Barrett's esophagus (BE), prevention of late-stage EAC remains a significant clinical challenge.

View Article and Find Full Text PDF

Establishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, , provides one of the best-known case studies of this process. In Drosophila, localized mRNA of serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo.

View Article and Find Full Text PDF

Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials.

Small Methods

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China.

Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials.

View Article and Find Full Text PDF

The integration of photodynamic therapy (PDT) and photothermal therapy (PTT) offers a promising strategy for enhancing phototherapy efficiency. Herein, we present a dual-functional, biocompatible nanocomposite system for combination PDT/PTT therapy. The system utilizes a highly biocompatible nanoparticle assembled by an amphiphilic short peptide with the assistance of Zn as a carrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!