Rat colonic lipid peroxidation and antioxidant status: the effects of dietary luteolin on 1,2-dimethylhydrazine challenge.

Cell Mol Biol Lett

Department of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamilnadu, India.

Published: December 2005

Colon cancer is the third most common cancer and second leading cause of cancer-related death in the United States. A number of recent articles demonstrate the importance of natural products as cancer chemopreventive agents. In this study, we evaluated the chemopreventive efficacy of luteolin, a flavonoid, on tissue lipid peroxidation and antioxidant status, which are used as biomarkers in DMH-induced experimental colon carcinogenesis. Rats were given a weekly subcutaneous injection of DMH at a dose of 20 mg/kg body weight for 15 weeks. Luteolin (0.2 mg/kg body weight/everyday p.o.) was given to the DMH-treated rats at the initiation and post-initiation stages of carcinogenesis. The animals were killed after 30 weeks. After a total experimental period of 32 weeks (including 2 weeks of acclimatization), tumor incidence was 100% in DMH-treated rats. In those DMH-treated rats that had received luteolin during the initiation or post-initiation stages of colon carcinogenesis, the incidence of cancer and the colon tumor size was significantly reduced as compared to that for DMH-treated rats not receiving luteolin. In the presence of DMH, relative to the results for the control rats, there were decreased levels of lipid peroxidation, as denoted by thiobarbituric acid reactive substances (TBARS), conjugated dienes and lipid hydroperoxides, decreased activities of the enzymic antioxidants superoxide dismutase (SOD) and catalase (CAT), and elevated levels of glutathione and the glutathione-dependent enzymes reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR), and of the non-enzymic antioxidants vitamin C and vitamin E. Our study shows that intragastric administration of luteolin inhibits colon carcinogenesis, not only by modulating lipid peroxidation and antioxidant status, but also by preventing DMH-induced histopathological changes. Our results thus indicate that luteolin could act as a potent chemopreventive agent for colon carcinogenesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lipid peroxidation
16
colon carcinogenesis
16
dmh-treated rats
16
peroxidation antioxidant
12
antioxidant status
12
mg/kg body
8
initiation post-initiation
8
post-initiation stages
8
luteolin
7
colon
6

Similar Publications

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.

Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.

View Article and Find Full Text PDF

Cell-membrane targeting sonodynamic therapy combination with FSP1 inhibition for ferroptosis-boosted immunotherapy.

Mater Today Bio

February 2025

Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.

Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.

View Article and Find Full Text PDF

This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.

View Article and Find Full Text PDF

Insights of cellular and molecular changes in sugarcane response to oxidative signaling.

BMC Plant Biol

January 2025

Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.

Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!