Melatonin and Parkinson's disease.

Endocrine

Departamento de Morfología y Biología Celular, School of Medicine, University of Oviedo, Oviedo, Spain.

Published: July 2005

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is characterized by a progressive loss of dopamine in the substantia nigra and striatum. However, over 70% of dopaminergic neuronal death occurs before the first symptoms appear, which makes either early diagnosis or effective treatments extremely difficult. Only symptomatic therapies have been used, including levodopa (l-dopa), to restore dopamine content; however, the use of l-dopa leads to some long-term pro-oxidant damage. In addition to a few specific mutations, oxidative stress and generation of free radicals from both mitochondrial impairment and dopamine metabolism are considered to play critical roles in PD etiology. Thus, the use of antioxidants as an important co-treatment with traditional therapies for PD has been suggested. Melatonin, or N-acetyl-5-methoxy-tryptamine, an indole mainly produced in the pineal gland, has been shown to have potent endogenous antioxidant actions. Because neurodegenerative disorders are mainly caused by oxidative damage, melatonin has been tested successfully in both in vivo and in vitro models of PD. The present review provides an up-to-date account of the findings and mechanisms involved in neuroprotection of melatonin in PD.

Download full-text PDF

Source
http://dx.doi.org/10.1385/ENDO:27:2:169DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
melatonin
4
melatonin parkinson's
4
disease parkinson's
4
disease second
4
second common
4
common neurodegenerative
4
neurodegenerative disorder
4
disorder alzheimer's
4
alzheimer's disease
4

Similar Publications

Fluctuation-related pain (FRP) affects more than one third of people with Parkinson's disease (PwP, PD) and has a harmful effect on health-related quality of life (HRQoL), but often remains under-reported by patients and neglected by clinicians. The National Institute for Health and Care Excellence (NICE) recommends The Parkinson KinetiGraphTM (the PKGTM) for remote monitoring of motor symptoms. We investigated potential links between the PKGTM-obtained parameters and clinical rating scores for FRP in PwP in an exploratory, cross-sectional analysis of two prospective studies: "The Non-motor International Longitudinal, Real-Life Study in PD-NILS" and "An observational-based registry of baseline PKG™ in PD-PKGReg".

View Article and Find Full Text PDF

Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a complex progressive neurodegenerative disorder and the pathogenesis and treatment methods are unknown. This aim is to investigate the effects of long non coding RNA NEAT1 (LncRNA NEAT1) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). Immunoprecipitation and western blot were used to search for the effects of LncRNA NEAT1 on PD.

View Article and Find Full Text PDF

We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!